
I-1

Appendix I

Geometry Files (GEM Files)

I.1 Introduction

SIMION provides a variety of methods for defining the geometry of electrode/pole points in

a potential array: The Modify function, geometry files (GEM), STL 3D CAD files, or exter-

nally/programmatically defined potential arrays such as via the SL Libraries. Modify allows

the user to interactively create, modify, and view electrode/pole point geometry. Geometry

files are typically used for complex 3D geometry and/or an any geometry definitions that

may need to be scaled (e.g. doubled without introducing the jags) or parameterized.

Geometry files can either be used in conjunction with Modify or as a stand-alone method

for geometry definition within New. The Modify function has a geometry file development

system within it. Modify’s geometry file development system provides a quick way to write,

test, and modify geometry files.

Caution

GEM files are an advanced SIMION feature. It requires that you learn a geometry

definition language. However, the effort you spend learning to create geometry

files will add powerful capabilities to your SIMION bag of tricks.

SIMION 7 Note

SIMION 8.0 and SIMION 7.0 GEM files are identical, though 8.0.x version may add

certain extensions.a

a8.0.4 added Lua macro and variable substitution support. See the page "GEM Geometry File

> Macro Support" in the supplementary electronic documentation (Help menu).

What Is a Geometry File?

A geometry file is an ASCII file with a .GEM extension (e.g. TEST.GEM) that uses a 3D

solid geometry modeling language to define the desired electrode/pole array geometry via

a series of fill (and other) instructions. Geometry instructions are similar in structure to C

language functions. However, unlike C language functions, geometry language instructions

are nested (somewhat like in PASCAL) to enhance their power.

I-2 | Chapter I. GEOMETRY FILES (GEM FILES)

How Does SIMION Process a .GEM File?

The geometry language compiler in SIMION reads the selected geometry file and converts

its fill (and other) instructions into a decision list in RAM. SIMION then uses this deci-

sion list to determine the fate of each point in the target potential array. This is done one

point at a time.

SIMION takes the coordinates of the point and looks from the last Fill defined toward the

first Fill defined in the decision list until it encounters the first Fill’s volume that contains

the point. When and if this Fill is encountered the point is changed to the Fill’s value and

the search stops for that point.

The effect is the same as if each Fill were applied to the potential array as it was encountered

while reading the geometry file (not an efficient approach). Each point will have the type

and value of the last Fill in the geometry file that changed it. This is a very important

concept to remember!

Two Examples of a SIMION .GEM File

Figure I.1: Electrode geometry created by demo.gem with cutaway view in Modify.

Below are two listings of .GEM files that create a 101x, 101y, 101z 3D potential array and

insert a hollow one volt electrode point ellipsoid in the middle. Note: These geometry files

are coded in two very different (though legal) styles. It is suggested that you study these

simple examples carefully. They provide an introduction to the world of SIMION geometry

files:

A Questionable Geometry Definition Style

pa_define(101,101,101,p,n)locate(50,50,50){e(1){fill{within{sphere ←֓

(,,,45,25,45)}notin{sphere(,,,40,20,40)}}}}

A Suggested Geometry Definition Style

Section I.2. Geometry Language Rules | I-3

Example I.1 demo.gem

; This geometry file creates a 101,101,101 planar non-mirrored 3d PA and

; inserts a hollow ellipsoid in the middle

; Define PA to create

pa_define(101,101,101,planar,non-mirrored)

; Define ellipsoid

locate(50,50,50,1,0,0,0) ; locate geometry origin in center of ←֓

PA

{

electrode(1) ; electrode of one volt

{

fill ; solid fill

{

within{sphere(0,0,0,45,25,45)} ; within ellipsoid centered at ←֓

geometry

; origin rx = 45, ry = 25, rz = 45

notin{sphere(0,0,0,40,20,40)} ; not in ellipsoid centered at ←֓

geometry

; origin rx = 40, ry = 20, rz = 40

; (hollow out ellipsoid)

}

}

}

A Quick Demo of Geometry Files

Do the following if you want a demonstration of geometry files (Figure I.1). Start SIMION.

Click the New button. Click the Use Geometry File button. Navigate to the geometry

directory (in the SIMION program folder) and select the demo.gem file. demo.gem is

the example above. After the PA is created and the geometry is inserted, look at it with the

View function. Cut the ellipsoid in half to verify that it is hollow.

Now exit View and enter the Modify function. Click the GeomF button to access the ge-

ometry development facility. Click the Edit button (accesses the text editor) to view the

geometry file. Exit the text editor. Now erase the potential array by clicking the Erase

Entire PA button. Click the Cancel button to return to Modify and verify that the array is

erased. Click the GeomF button to reenter the geometry development facility. Now click

the Insert into PA button and the geometry will be reinserted. The above example should

serve to wet your appetite for the material below.

I.2 Geometry Language Rules

Both of the above geometry definitions will generate the same potential array and elec-

trode geometry and will run at the same speed. However, the second example will be easy

I-4 | Chapter I. GEOMETRY FILES (GEM FILES)

to support and modify later. Remember, you have the freedom to make your geometry def-

initions as cryptic or verbose as you like. There are several characteristics of the language

that should be apparent:

Upper and Lower Case: SIMION ignores the case of the geometry instructions entered.

You may use upper and lower case freely to improve readability.

Blank Lines and Indention’s: Blank lines are ignored. Use blank lines to create good

visual separation of various regions of geometry definitions. You may indent as desired.

When properly used, indention can significantly improve instruction readability (particu-

larly nested geometry language instructions).

The Semicolon ; Starts an In-line Comment: In-line comments begin with a semicolon.

All information after the semicolon (including the semicolon) is ignored by the geometry

compiler (to the end of the current line). These comments have no effect on the speed of

geometry files (so use them!).

Line length Limits: The geometry compiler ignores characters beyond column 200 in all

lines.

Instruction Oriented Language Structure: Geometry files are composed of a nested

collection of geometry instructions (instructions are contained within other instructions).

Examples of the three formats used for geometry instructions are discussed below:

1. Type 1: sphere(„,45,25,45)

2. Type 2: fill{}

3. Type 3: locate(50,50,50){}

The Instruction Name - Required: All Types: All geometry instructions begin with their

name (e.g. sphere). SIMION supports the use of synonyms for many of its geometry

instructions. For example: The letter "e" is a synonym of "electrode". The specific discus-

sions of each instruction give its synonyms (if any).

Parameter List () - Required: Types 1 & 3: A parameter list (when required) immedi-

ately follows the instruction name and is delimited by a left and right parenthesis (e.g. (

)). One or more parameters (as required by the specific instruction) are entered within the

parenthesis delimiters. Parameters can be numbers or words (depending on the instruction)

and are separated by commas and/or spaces—e.g. (1,2,3) is the same as (1 2 3).

Most parameters have a default value. That is, if you skip them, SIMION will assume

a value for them. For example: circle() is equivalent to circle(0,0,10). You

may use commas to skip (use default values for) one or more parameters. For example:

circle(10„30) is equivalent to circle(10,0,30).

The specific discussions of each instruction give its parameter requirements (if any) along

with its default parameter values.

The Instruction Scope { } - Required: Types 2 & 3: Many instructions have what is

known as a scope (or range of effect). The scope of an instruction is limited to instructions

that appear within its wavy brackets (e.g. { }). These scope brackets always appear

immediately after the instruction name (type 2) or after the required parameter list (type 3).

Scope is a very important concept in geometry files because it is used for nesting instruc-

tions (placing instructions inside of instructions). It delimits the range of effect or bounds

of an instruction. The following instruction segment serves as an example:

Section I.2. Geometry Language Rules | I-5

electrode(100) ; use electrode of 100 volts

{

fill{....} ; fill something with 100 volt electrode points

electrode(200) ; use electrode of 200 volts

{

fill{...} ; fill something with 200 volt electrode points

}

fill{...} ; fill something with 100 volt electrode points

}

fill{...} ; fill something with 0 V electrode points (default)

In the example above the first fill uses electrode points of 100 volts. The second fill

uses electrode points of 200 volts because it is inside the scope of a 200 volt electrode

definition. The third fill uses electrode points of 100 volts because it is in the scope of

the 100 volt electrode points. The fourth fill is using the default value of 0 volt electrode

(assuming that this is not an included geometry file).

As of 8.0.4, Lua macros, including variable substitutions, can be embedded in GEM files.1

I.2.1 Classes of Instructions

There are several classes of instructions. The following discusses each class of instruction

and gives the names of the instructions in that class:

PA Definition Class

Instructions: pa_define()

Defines potential array to create if .GEM called from New function. This must always be

the first instruction in .GEM file if used (optional instruction).

Include Class

Instructions: include()

The Include Class instruction allows a .GEM file to reference another .GEM file. Thus you

can keep component definitions in separate .GEM files and have a base .GEM file reference

and insert these components in their desired locations.

Point Definition Class

Instructions: electrode(){}, non_electrode(){}, pole(){} (synonym for

electrode), non_pole(){} (synonym for non_electrode)

The Point Definition Class of instructions define the point type and potential to use in fills

within their scope. Note: pole and electrode are synonyms.

1"GEM Geometry File > Macro Support" page in supplemental electronic documentation (Help menu).

I-6 | Chapter I. GEOMETRY FILES (GEM FILES)

Fill Class

Instructions: fill{}, edge_fill{}, rotate_fill(){}, rotate_edge_fill(){}

Fill Class instructions define the four types of fills supported in geometry files: fill is used

for full defined volume fills, edge_fill is used to change only the boundary points of

the defined volume. rotate_fill is used to create a fill volume by rotating a surface of

revolution through an angle. rotate_edge_fill is used to change only the boundary

points of a fill volume produced by rotating a surface of revolution through an angle.

The scope of these instructions contains the volume inclusion and exclusion instructions

(e.g. Withins and Notins below) to be used to determine the volume they act upon. To

be acted on by a fill instruction (any of the four types) a point must be within a defined

inclusion volume (e.g. within) and not within any defined exclusion volume (e.g. no-

tin).

Within Class

Instructions: within{}, within_inside{}, within_inside_or_on{}, notin{},

notin_inside{}, notin_inside_or_on{}

The six Within Class instructions always appear within the scope of a Fill Class instruction.

They contain one or more Test Class instructions (e.g. circle()). Each Test Class in-

struction within the scope of a Within Class instruction is tested and the results are logically

ANDed. Thus in the following statement group: within{sphere(0,0,0,25)sphere(20,0,0,25)}

only those points that fall within both sphere definitions will be considered to be within the

inclusion volume.

within, within_inside, and within_inside_or_on are used to define inclusion

volumes. notin, notin_inside, and notin_inside_or_on are used to define

exclusion volumes. More than one of the six within or notin type instructions can

appear within the scope of any Fill Class instruction. If more than one of each appears their

results are logically ORed. Thus a point (to be acted on by a fill) must be within at least

one of the Withins and not within any of the Notins.

There are three forms of each Within Class instruction. Each form uses a slightly different

inclusion test to help you make your geometry definitions more precise, and less scaling

dependent. The following explains the inclusion tests performed for each type:

within and notin

The inclusion test performed for this class of instructions requires that the array point be

within 0.5 grid unit beyond the outer boundary to be considered included:

within{circle(0,0,r)} points included < r + (0.5 gu)

notin{circle(0,0,r)} points included < r + (0.5 gu)

within_inside and notin_inside

The inclusion test performed for this class of instructions requires that the array point be

inside but not on the outer boundary to be considered included:

Section I.2. Geometry Language Rules | I-7

within_inside{circle(0,0,r)} points included < r

notin_inside{circle(0,0,r)} points included < r

within_inside_or_on and notin_inside_or_on

The inclusion test performed for this class of instructions requires that the array point be

inside, on, but not outside the outer boundary to be considered included:

within_inside{circle(0,0,r)} points included <= r

notin_inside{circle(0,0,r)} points included <= r

Test Class

Instructions: box(), centered_box(), corner_box() box3d(), centered_box3d(),

corner_box3d(), circle(), cylinder(), sphere() parabola(), hyperbola()

points(), points3d(), polyline()

Test Class instructions can only appear within the scope of a Within Class instruction (e.g.

within or notin). They test to see if the point in question is within their volume. If

it is, they return a logical TRUE. If more than one Test Class instruction appears within

a Within Class instruction (e.g. within) their results are logically ANDed. All tests must

return TRUE in a Within Class instruction for the result to be considered TRUE.

Note that test class instructions contain both 2D (e.g. circle()) and 3D (e.g. sphere())

instructions. All 2D instructions are defined in terms of an xy plane (e.g. z = 0). However

all 2D instructions are assumed to extend to plus or minus 106 in the z axis direction so

they can be used with 3D arrays. Any 3D instruction can also be used in a 2D array. It will

test TRUE in the areas where it intersects the z = 0 plane (xy plane).

Of course all this becomes much more interesting (complex) when one sprinkles Location

Class instructions within the scope of a geometry file (below). Note: Test Class instructions

have minimal definition options because Locate Class instruction(s) can always be used

to more precisely define them.

Location Class

Instructions: locate(){}, project(){} (synonym for locate)

Location Class instructions are used to locate (e.g. project) the geometry axis within their

scope (by location, scaling and orientation) onto the geometry axis outside their scope.

These are the workhorse instructions of geometry files because they can appear within any

scope in any geometry file. Most errors result from the misuse of Locate instructions.

As a contrived example: Let’s assume we want a cylindrical tube (with elliptical hole) with

ends cut at a 45 degree angle (forming elliptical ends). Further, we want the resulting tube

pointed down and centered on the x-axis. See the instruction fragment shown below:

locate(0,0,0,1,-90) ; swing cylinder -90 degrees (cw) to ←֓

center on x-axis

{

fill ; volume fill with current point and type

I-8 | Chapter I. GEOMETRY FILES (GEM FILES)

Figure I.2: Electrode geometry created by demo2.gem.

{

within ; include volume

{

circle(0,0,10) ; radius 10 tube with infinite z extent

locate(0,0,0,1,45) ; swing box volume ccw 45 degrees

{

box(-20,-100,20,100) ; box of x width of 40 (infinite z ←֓

extent)

} ; use large values of y so circle limits ←֓

volume in y

}

notin{circle(0,0,8,4)} ; bores 8 rx by 4 ry elliptical hole in ←֓

circular rod

}

}

To understand what goes on here (without yet knowing instruction details) one must work

from the inside out when dealing with Locates (projects). Thus the box must be thought

of as rotated ccw 45 degrees in azimuth in order to compute its intersection volume with the

circular rod of the circle instruction. The result is then rotated cw 90 degrees in azimuth

to center it along the x-axis beyond the outer locate (Figure I.2 - demo2.gem). Wasn’t

that fun!

I.2.2 Instruction Nesting Rules

Geometry instruction classes have rules concerning when and where they can appear in a

geometry file. This is called instruction nesting rules. These nesting rules make use of the

Section I.2. Geometry Language Rules | I-9

notion of nesting levels. The geometry language compiler enforces these rules!

A geometry file has three nesting levels: Base Nesting Level, Fill Nesting Level, and Within

Nesting Level. A geometry file is at Base Nesting Level whenever instructions are outside

the scope of a Fill Class instruction. The level is at Fill Nesting Level whenever instruc-

tions are inside the immediate scope of any Fill Class instruction. Finally, the level is at

Within Nesting Level whenever instructions are inside the immediate scope of any Within

Class instruction. The sample geometry code fragment below serves to demonstrate nesting

levels:

e(...)

{ ; at Base Nesting Level

locate(...)

{ ; at Base Nesting Level

fill

{ ; at Fill Nesting Level

locate(...)

{ ; at Fill Nesting Level

within

{ ; at Within Nesting Level

circle(...)

locate(...){box(...)}

} ; return to Fill Nesting Level

} ; at Fill Nesting Level

notin

{ ; at Within Nesting Level

hyperbola(...)

} ; return to Fill Nesting Level

} ; return to Base Nesting Level

} ; at Base Nesting Level

} ; at Base Nesting Level

The following gives the classes of commands that can appear within each of the three nest-

ing levels:

Classes Legal in Base Nesting Level

• Point Definition Class

• Include Class

• Fill Class

• Location Class

Classes Legal in Fill Nesting Level

• Within Class

• Location Class

Classes Legal in Within Nesting Level

• Test Class

• Location Class

I-10 | Chapter I. GEOMETRY FILES (GEM FILES)

Note:

1. Location Class instructions (e.g. locate) are legal at any nesting level.

2. Also, a PA Definition Class instruction (e.g. pa_define) must always be the first

base level instruction in a .GEM file if used.

I.3 Geometry Instructions

The following is a detailed discussion of each legal geometry instruction. Instruction syn-

onyms (if any) appear after the "or:".

I.3.1 box or: box2d

Format: box(xmin, ymin, xmax, ymax)

Default Values: box(0,0,10,10)

Class: Test Class

When Legal: Within Nesting Level

Defines 2D box (e.g. on current xy plane: z = 0). Parameters define the 2D min. and max.

corner locations of the box. The box extends plus or minus 106 in z. Returns TRUE if point

within its bounds.

box(-5,,50,60)

Defines 2D box with lower left corner at -5x, 0y and upper right corner at 50x, 60y. zmin is

-106 and zmax is 106.

I.3.2 box3d

Format:
box3d(xmin, ymin, zmin, xmax, ymax,

zmax)

Default Values: box3d(0,0,0,10,10,10)

Class: Test Class

When Legal: Within Nesting Level

Defines 3D box. Parameters define the 3D min. and max. corner locations of the box.

Returns TRUE if point within its bounds.

box(-5,,-10,50,60,100)

Defines 3D box with lower left corner at -5x, 0y, -10z and upper right corner at 50x, 60y,

100z.

Section I.3. Geometry Instructions | I-11

I.3.3 centered_box or: centered_box2d, cent_box, cent_box2d

Format: centered_box(xc, yc, xw, yw)

Default Values: centered_box(0,0,10,10)

Class: Test Class

When Legal: Within Nesting Level

Defines 2D centered box (e.g. on current xy plane). Parameters define the center point and

dimensions of the box. The centered box extends plus or minus 106 in z. Returns TRUE if

point within its bounds.

centered_box(-5,,50,60)

Defines 2D centered box with center at -5x, 0y and dimensions of 50x wide, 60y high. zmin

is -106 and zmax is 106.

I.3.4 centered_box3d or: cent_box3d

Format:
centered_box3d(xc, yc, zc, xw, yw,

zw)

Default Values: centered_box3d(0,0,0,10,10,10)

Class: Test Class

When Legal: Within Nesting Level

Defines 3D centered box. Parameters define the center point and dimensions of the box.

Returns TRUE if point within its bounds.

centered_box(-5,,-10,50,60,100)

Defines 3D centered box with center at -5x, 0y, -10z and dimensions of 50x wide, 60y high,

100z deep.

I.3.5 circle or: ellipse

Format: circle(xc, yc, rx, ry)

Default Values: circle(0,0,10,10)

Class: Test Class

When Legal: Within Nesting Level

Defines 2D circle or ellipse (e.g. on current xy plane). Parameters define the center and

radii. The 2D circle extends plus or minus 106 in z. Note: If ry is defaulted, a circle of

radius rx will be drawn. Returns TRUE if point within its bounds.

I-12 | Chapter I. GEOMETRY FILES (GEM FILES)

circle(15,20,30,10)

Defines and ellipse centered 15x, 20y with radii of 30 rx, 10 ry. zmin is -106 and zmax is

106.

I.3.6 corner_box or: corner_box2d, corn_box, corn_box2d

Format: corner_box(xmin, ymin, xw, yw)

Default Values: corner_box(0,0,10,10)

Class: Test Class

When Legal: Within Nesting Level

Defines 2D corner box (e.g. on current xy plane). Parameters define the min. corner point

(lower left) and dimensions of the box. The corner box extends plus or minus 106 in z.

Returns TRUE if point within its bounds.

corner_box(-5,,50,60)

Defines 2D corner box with lower left corner at -5x, 0y and dimensions of 50x wide, 60y

high. zmin is -106 and zmax is 106.

I.3.7 corner_box3d or: corn_box3d

Format:
corner_box3d(xmin, ymin, zmin, xw,

yw, zw)

Default Values: corner_box3d(0,0,0,10,10,10)

Class: Test Class

When Legal: Within Nesting Level

Defines 3D corner box. Parameters define the min. corner point (lower left) and dimensions

of the box. Returns TRUE if point within its bounds.

corner_box3d(-5,,-10,50,60,100)

Defines 3D corner box with lower left corner at -5x, 0y, -10z and dimensions of 50x wide,

60y high, 100z deep.

I.3.8 cylinder

Format: cylinder(xc, yc, zc, rx, ry, length)

Default Values: cylinder(0,0,0,10,10,10)

Class: Test Class

When Legal: Within Nesting Level

Section I.3. Geometry Instructions | I-13

Defines 3D circular or elliptical cylinder. Parameters define the center at one end, radii, and

length. Length is always converted to its absolute value and extends in the minus z axis

direction. Note: If ry is defaulted, a cylinder of radius rx will be drawn. Returns TRUE if

point within its bounds.

cylinder(15,20,30,10,,50)

Defines a circular cylinder with one end centered at 15x, 20y, 30z with a radius of 10 and

length of 50 (e.g. extending from z = 30 to z = -20).

I.3.9 edge_fill or: edge_fill_volume

Format: edge_fill { }

Default Values: NA

Class: Fill Class

When Legal: Base Nesting Level

Defines a volume edge fill using the currently active point type and potential. It raises the

nesting level to Fill Nesting Level within its scope (e.g. { }). Its scope must contain at

least one Within or Notin instruction. If no Within instruction is supplied, the point

is assumed within, subject to rejection by Notin tests. There is no limit to the number of

Withins or Notins that can appear inside the scope of a Fill Class instruction.

The edge_fill instruction fills only the boundary points (edge) of the equivalent fill

volume. Thus if a normal fill would create a solid sphere, an edge_fill would create a

spherical shell. This has the same function as the Edge command in Modify.

edge_fill

{

within{sphere(0,0,0,50,20,50)}

notin{circle(0,0,20,10)}

}

Creates an ellipsoid shell with an elliptical shell passing through its center in the z direction.

I.3.10 electrode or: e, p, elect, pole, electrode_points, pole_p-

oints

Format: electrode(potential) { }

Default Values: electrode(0) { }

Class: Point Definition Class

When Legal: Base Nesting Level

Defines fill point type of electrode or pole and its associated potential to use within the

instruction’s scope (e.g. {}).

I-14 | Chapter I. GEOMETRY FILES (GEM FILES)

electrode(1)

{

fill{...} ; electrode/pole points of one volt used for fill

}

I.3.11 fill or: fill_volume

Format: fill { }

Default Values: NA

Class: Fill Class

When Legal: Base Nesting Level

Defines a full volume fill using the currently active point type and potential. It raises the

nesting level to Fill Nesting Level within its scope (e.g. { }). Its scope must contain at least

one within or notin instruction. If no within instruction is supplied, the point is assumed

within, subject to rejection by notin tests. There is no limit to the number of withins or

notins that can appear inside the scope of a fill class instruction.

Each within or notin instruction defines a separate volume (through the use of tests: e.g.

circle()). Points are checked against these tests to determine if the various Withi-

ns and/or Notins are TRUE. A point is considered to be within the fill if it is inside at

least one Within volume and not inside any Notin volumes. The results of multiple

Withins and/or Notins are ORed with their own kind to satisfy the above test.

fill

{

within{circle(0,0,20)}

within{circle(100,20,20)}

notin_inside{circle(0,0,10)}

notin_inside{circle(100,20,10)}

}

Fills two hollow circles (2D potential array) or two hollow tubes (3D potential array). The

tubes are centered at 0x, 0y and 100x, 20y. Both have an outside radius of 20 and an inside

radius of 10. This of course assumes that there are no locates outside of the fill and thus the

units are in potential array grid units.

I.3.12 hyperbola

Format: hyperbola(xc, yc, rx, ry)

Default Values: hyperbola(0,0,10,10)

Class: Test Class

When Legal: Within Nesting Level

Section I.3. Geometry Instructions | I-15

Y

X

rx

ry

(xc, yc)

Hyperbola Definition

Figure I.3: Hyperbola definition.

Defines 2D hyperbola in the y-axis direction only (e.g. on current xy plane). Parameters

define the center and focus radial offset of vertices in x and y. The 2D hyperbola extends

plus or minus 106 in z. Returns TRUE if point within its bounds.

Function used: (y - yc)2/ry2 - (x - xc)2/rx2 = 1

hyperbola(50,0,10,20)

Defines hyperbola extending in y directions with center at 50x, 0y with radius to x vertices

of 10 and y vertices of 20. Hint: Use locate instruction to orient hyperbolas in x direction

when desired:

locate(50,0,0,,,-90){hyperbola(0,0,20,10)}

Example above defines matching x direction hyperbola to y direction hyperbola defined

above it. zmin is -106 and zmax is 106.

I.3.13 include or: include_file

Format: includeFilename

Default Values: None

Class: Include Class

When Legal: Base Nesting Level

Includes (inserts) geometry instructions from the referenced .GEM file (Filename: e.g.

test.gem) at the point of the include instruction’s location in the referencing geometry file.

Included geometry files can reference other geometry files via includes. The geometry

compiler limits include nesting to 15 levels deep to protect against accidental include

recursion (an include file directly or indirectly calling itself).

I-16 | Chapter I. GEOMETRY FILES (GEM FILES)

The Filename cannot be defaulted and must be a legal geometry file name (e.g. test.gem -

both long and short filenames are supported). The .GEM file extension will automatically

be added (e.g. TEST changed to TEST.GEM) when needed.

A suggested use for include files involves components. You can define a component in an

include .GEM file and then reference it from a calling .GEM file:

;lens1.gem file image

locate(,,,,-90) ;swing lens to align with x-axis

{ ;centered on origin

fill ;simple volume fill

{

within{cylinder(0,0,-2,50,,4)} ;cylinder with r = 50 centered at ←֓

origin

notin{circle(0,0,5)} ;define aperture in lens of r = 5

}

}

;end of lens1.gem file image

;fragment of referencing geometry file

locate(10){ e(1){ include(lens1) } } ;locate lens1 at 10x with ele ←֓

points of 1 volt

locate(35){ e(2){ include(lens1) } } ;locate lens1 at 35x with ele ←֓

points of 2 volts

locate(48){ e(3){ include(lens1) } } ;locate lens1 at 48x with ele ←֓

points of 3 volts

The above example works only if lens1 is defined in some useful orientation for the calling

locates to use (as in the example above). Moreover, it is often useful for the point type to

be specified in the referencing .GEM file as opposed to the included .GEM file (as shown

above).

I.3.14 locate or: project, project_it, transform

Format: locate(x,y,z,scale,az,el,rt) { }

Default Values: locate(0,0,0,1,0,0,0) { }

Class: Location Class

When Legal: Any Nesting Level

Locates (projects) geometry coordinates within its scope (internal geometry coordinates)

into the geometry coordinates active just outside its scope (external geometry coordinates)

using the defined transformation parameters:

x,y,z Amount to offset the geometry origin when translating it from internal

to external coordinates.

locate(10,20,30) { }: Projects the internal geometry origin 0x, 0y, 0z to

10x, 20y, 30z in external geometry coordinates.

scale Scaling factor to use when translating internal coordinates to the equiv-

alent external coordinates.

Section I.3. Geometry Instructions | I-17

X Axis

Y
 A

xi
s

Z A
xis

Projected

Internal

X Axis

Az Angle

El Angle

Rt Angle

Angular Orientations

External
Coorinates

Figure I.4: Angular orientation.

locate(„,2) { }: Scales internal coordinates by a factor of two to translate

them into the external coordinates (internal objects are doubled in size as

projected).

az Azimuth angle to apply when projecting the internal coordinates into ex-

ternal coordinates. Azimuth angle is degrees of ccw rotation about the

y-axis looking down the positive y-axis toward the origin.

locate(„„90) { }: Azimuth angle of 90 degrees. Internal z-axis made par-

allel to external x-axis. Internal x-axis made parallel to external negative

z-axis. Internal y-axis remains parallel to external y-axis (assuming el =

rt = 0).

el Elevation angle to apply when projecting the internal coordinates into ex-

ternal coordinates. Elevation angle is degrees of ccw rotation about the

z-axis looking down the positive z-axis toward the origin .

locate(„„,90) { }: Elevation angle of 90 degrees. Internal x-axis made

parallel to external y-axis. Internal y-axis made parallel to external neg-

ative x-axis. Internal z-axis remains parallel to external z-axis (assuming

az = rt = 0).

rt Rotation angle to apply when projecting the internal coordinates into ex-

ternal coordinates. Rotation angle is degrees of ccw rotation about the

x-axis looking down the positive x-axis toward the origin.

locate(„„„90) { }: Rotation angle of 90 degrees. Internal y-axis made

parallel to external z-axis. Internal z-axis made parallel to external nega-

tive y-axis. Internal x-axis remains parallel to external x-axis (assuming

az = el = 0).

Order in which Transforms are Applied (IMPORTANT): The above transformations are

applied in the following order (via a 3D transfer matrix) :

1. The rotation (rt) transformation is applied first, creating a new interim coordinate

system.

2. The elevation (el) transformation is applied next to the interim coordinate system

creating the next interim coordinate system.

3. The azimuth (az) transformation is then applied to the interim coordinate system

creating the next interim coordinate system.

I-18 | Chapter I. GEOMETRY FILES (GEM FILES)

4. The scaling (scale) transformation is then applied.

5. Finally the origin offset (x,y,z) transformation is applied.

How Locates are Actually Used by SIMION: SIMION converts each locate instruction

into a 3D transfer matrix. Transfer matrices of nested locate instructions are multiplied to

obtain the aggregate 3D transfer matrix to translate test instruction coordinates into potential

array coordinates. The inverse of this aggregate 3D transfer matrix is used in translating

potential array coordinates into the current test instruction coordinates.

Example of Nested Locate Instructions: Sometimes it is easier to visualize a transforma-

tion (not get lost) by using nested locates: Remember: Always apply nested locates from

the innermost locate working outward toward the outermost locate!

;Single locate twists rectangular solid 30 along x-axis, 45 y-axis, and ←֓

then -90 z-axis

locate(0,0,0,1,-90,45,30) ;First: rt ccw 30 , el ccw 45 , and then az cw ←֓

90

{

fill{within{cent_box3d(0,0,0,70,3,30)}}

}

;Triple locate twists rectangular solid 30 along x-axis, 45 y-axis, and ←֓

then -90 z-axis

locate(,,,,-90) ;Third: az cw 90 along z-axis

{

locate(,,,,,45) ;Second: el ccw 45 along y-axis

{

locate(,,,,,,30) ;First: rt ccw 30 along x-axis

{

fill{within{cent_box3d(0,0,0,70,3,30)}}

}

}

}

I.3.15 non_electrode or: n, non_e, non_p, non_pole, non_electr-

ode_points, non_pole_points

Format: non_electrode(potential) { }

Default Values: non_electrode(0) { }

Class: Point Definition Class

When Legal: Base Nesting Level

Defines fill point type of non_electrode or non_pole and its associated potential to use

within the instruction’s scope.

non_electrode()

{

fill{...} ;fill with non_electrode points of zero volts

}

Section I.3. Geometry Instructions | I-19

I.3.16 notin

Format: notin { }

Default Values: NA

Class: Within Class

When Legal: Fill Nesting Level

Must be called from within at the Fill Nesting Level (within a Fill Class instruction: fi-

ll). Holds one or more Test Class instructions within its scope that define a volume (3D

potential array) or area (2D potential array). There is no limit to the number of Test Class

instructions that can appear within the scope of a Within Class Instruction.

If a potential array point is contained within the intersection volume (or area) expanded 0.5

grid unit (as projected) of the tests contained in its scope, a TRUE is returned. Thus, all the

test class instructions (e.g. circle()) inside the scope of a Within Class instruction (e.g.

within{}) must return TRUE for the Within Class instruction to return TRUE to the Fill

Class instruction.

All that is required for a point to be considered NOT within a fill’s volume is that at least

one notin instruction returns a TRUE.

fill

{ ;within right half of ellipsoid

within{sphere(0,0,0,50,30,50) box(0,-30,50,30)}

;notin inner ellipsoid circle combo

notin{sphere(0,0,0,45,25,45) circle(0,0,35)}

}

The example above creates the right half of an ellipsoid (x >= 0) centered 0x, 0y, 0z and

outer shell of 50rx, 30ry, 50rz with an inner ellipsoid circle removed from it (a complex

shape).

I.3.17 notin_inside

Format: notin_inside { }

Default Values: NA

Class: Within Class

When Legal: Fill Nesting Level

Must be called from within at the Fill Nesting Level (within a Fill Class instruction: fi-

ll). Holds one or more Test Class instructions within its scope that define a volume (3D

potential array) or area (2D potential array). There is no limit to the number of Test Class

instructions that can appear within the scope of a Within Class Instruction.

If a potential array point is contained within but not on or outside the intersection volume

boundary (or area) of the tests contained in its scope, a TRUE is returned. Thus, all the

test class instructions (e.g. circle()) inside the scope of a Within Class instruction (e.g.

I-20 | Chapter I. GEOMETRY FILES (GEM FILES)

within{}) must return TRUE for the Within Class instruction to return TRUE to the Fill

Class instruction.

All that is required for a point to be considered NOT within a fill’s volume is that at least

one notin_inside instruction returns a TRUE.

fill

{ ;within right half of ellipsoid

within{sphere(0,0,0,50,30,50) box(0,-30,50,30)}

;notin inner ellipsoid circle combo

notin_inside{sphere(0,0,0,45,25,45) circle(0,0,25)}

}

The example above creates the right half of an ellipsoid (x >= 0) centered 0x, 0y, 0z and

outer shell of 50rx, 30ry, 50rz with an inner ellipsoid circle removed from it (a complex

shape). Note: The inner ellipsoid boundary is included but its interior is excluded by the

notin_inside instruction.

Note: The normal notin also includes as notin all points that are within 0.5 grid unit (as

projected) of the volume boundary. This can cause problems when changing scales (e.g.

hole sizes are not preserved predictably).

The notin_inside and the notin_inside_or_onwere added to enhance the power

of the Notin class of commands for use in geometry definitions where change of scale (e.g.

doubling) could lead to unexpected notin size changes.

I.3.18 notin_inside_or_on

Format: notin_inside_or_on { }

Default Values: NA

Class: Within Class

When Legal: Fill Nesting Level

Must be called from within at the Fill Nesting Level (within a Fill Class instruction: fi-

ll). Holds one or more Test Class instructions within its scope that define a volume (3D

potential array) or area (2D potential array). There is no limit to the number of Test Class

instructions that can appear within the scope of a Within Class Instruction.

If a potential array point is contained within, on, but not outside the intersection volume

boundary (or area) of the tests contained in its scope, a TRUE is returned. Thus, all the

test class instructions (e.g. circle()) inside the scope of a Within Class instruction (e.g.

within{}) must return TRUE for the Within Class instruction to return TRUE to the Fill

Class instruction.

All that is required for a point to be considered NOT within a fill’s volume is that at least

one notin_inside_or_on instruction returns a TRUE.

fill

{ ;within right half of ellipsoid

within{sphere(0,0,0,50,30,50) box(0,-30,50,30)}

;notin inner ellipsoid circle combo

notin_inside_or_on{sphere(0,0,0,45,25,45) circle(0,0,25)}

}

Section I.3. Geometry Instructions | I-21

The example above creates the right half of an ellipsoid (x >= 0) centered 0x, 0y, 0z and

outer shell of 50rx, 30ry, 50rz with all points within or on an inner ellipsoid circle removed

from it (a complex shape).

Note: The normal notin also includes as notin all points that are within 0.5 grid unit (as

projected) of the volume boundary. This can cause problems when changing scales (e.g.

hole sizes are not preserved predictably).

The notin_inside and the notin_inside_or_onwere added to enhance the power

of the Notin class of commands for use in geometry definitions where change of scale (e.g.

doubling) could lead to unexpected notin size changes.

I.3.19 pa_define

Format:
pa_define(nx, ny, nz, Sym, Mirror,

Type, ng)

Default Values: pa_define(100,20,1,Cyl,Y,Elect,100)

Class: PA Define Class

When Legal: When First Instructions in File

Defines potential array to create if NAME.GEM called by New function. Instruction is ig-

nored when called from within Modify. However, its parameters are always checked for

errors. If it exists, it must always be the first command in the .GEM file (optional com-

mand).

nx The x dimension of the potential array. Must always be 3 or greater.

ny The y dimension of the potential array. Must always be 3 or greater.

nz The z dimension of the potential array. Must always be 1 or greater. A

value of 1 defines a 2D array. Values greater than one define a 3D array.

Sym The symmetry of the array: cylindrical or planar. The compiler

just checks the first letter. Thus "c" or "p" are sufficient. Note: 3D

arrays must always have planar symmetry.

Mirror The array mirroring can be: None, X, Y, Z, XY, YZ, XZ, XZY. The

compiler just scans the string for "X", "Y", and "Z". If none of these three

characters are found a mirroring of None is assumed. Legal mirroring

varies by array symmetry and if 2D or 3D:

• All 3D arrays: All mirroring options are legal

• Planar 2D arrays: All mirroring except z are legal

• Cylindrical 2D arrays: y mirroring is required, x is legal, z is illegal

Type The array type: Electrostatic or Magnetic. The compiler just checks the

first letter. Thus "E" or "M" are sufficient.

ng The magnetic scaling parameter (discussed elsewhere in main manual).

Must always be 1 or greater.

Example: pa_define(101,51,71,p,yz,m,30)

The array defined above has dimensions of nx = 101, ny = 51, nz = 71. It is 3D planar with

mirroring in y and z. The array’s type is magnetic with a ng scaling value of 30.

I-22 | Chapter I. GEOMETRY FILES (GEM FILES)

I.3.20 parabola

Format: parabola(xv, yv, focus_offset)

Default Values: parabola(0,0,10)

Class: Test Class

When Legal: Within Nesting Level

Defines 2D y direction parabola (e.g. on current xy plane: z = 0). Parameters define the

vertex and focus_offset in y. Both positive and negative numbers for focus_offset are legal

(0 is illegal). The 2D parabola extends plus or minus 106 in z. Returns TRUE if point within

its bounds.

Function used: (y - yv) = (x - xv)2/(4 * focus_offset)

parabola(15,20,30)

Defines parabola in positive y direction with vertex at 15x, 20y with focus_offset of 30.

Hint: Use Locate instruction to rotate parabola to x-axis when desired. zmin is -106 and

zmax is 106.

I.3.21 points or: points2d

Format: points(x,y, x,y, ...)

Default Values: None

Class: Test Class

When Legal: Within Nesting Level

Defines a collection of 2D (e.g. on current xy plane: z = 0) points (unconnected points).

Parameters define the x,y coordinates of each point. Up to 100 x,y points can be defined in

the parameter list. Each 2D point extends plus or minus 106 in z. Returns TRUE if point

within its bounds of one of the defined points.

fill ;solid fill with current point def

{

locate(50,50) ;shift center to 50x, 50y

{

within{points(-15,-15 ;create three points at ends of ←֓

triangle

15,-15

0,15)}

}

}

Defines three points at the ends of triangle. This produces three lines in a 3D array. Note

the use of locate to make the definition easier. zmin is -106 and zmax is 106.

SIMION tries to map each point into a point (2D) or line (3D) in the potential array. How-

ever, odd scaling and orientations can result in up to four PA points being changed instead

Section I.3. Geometry Instructions | I-23

of one. It is recommended that points be defined in potential array coordinates to avoid

this issue.

I.3.22 points3d

Format: points3d(x,y,z x,y,z ...)

Default Values: None

Class: Test Class

When Legal: Within Nesting Level

Defines a collection of 3D points (unconnected points). Parameters define the x,y,z coor-

dinates of each point. Up to 65 x,y,z points can be defined in the parameter list. Returns

TRUE if potential array point is within bounds of one of the defined points.

fill ;solid fill with current point def

{

locate(50,50) ;shift center to 50x, 50y

{

within{points3d(-15,-15,0 ;create three 3D points at ends of ←֓

triangle

15,-15,0

0,15,0)}

}

}

Defines three points at the ends of triangle on the z = 0 plane. Note the use of locate to

make the definition easier.

SIMION tries to map each point into a point in the potential array. However, odd scaling

and orientations can result in up to six potential array points being changed instead of one.

It is recommended that points be defined in potential array coordinates to avoid this issue.

I.3.23 polyline

Format: polyline(x,y, x,y, ...)

Default Values: None

Class: Test Class

When Legal: Within Nesting Level

Defines 2D (e.g. on current xy plane: z = 0) polyline (connected line segments). Parameters

define the x,y endpoints of the connected line segments. Up to 100 x,y pairs can be defined

in the parameter list. SIMION assumes the polyline defines a 2D closed area (automatically

forcing closure with extra line segment if required). The 2D polyline closed area extends

plus or minus 106 in z. Returns TRUE if point within its bounds.

I-24 | Chapter I. GEOMETRY FILES (GEM FILES)

fill ; solid fill with current point def

{

locate(50,50) ; shift center to 50x, 50y

{

within{ellipse(0,0,40,30)} ; ellipse 40rx, 30ry

notin{polyline(-15,-15 ; create triangular hole

15,-15

0,15)}

}

}

Defines an ellipse with a triangular hole in it. SIMION automatically closes the triangle

polyline. Note the use of locate to make the definition easier. This produces a tube in a

3D array. zmin is -106 and zmax is 106.

Remember this is an area (volume) fill test. You can backtrack along a polyline to attempt

grids. However, odd angles and scaling may result in a pretty shabby grid definition. It is

recommended that you not backtrack, but rather define a volume, edge fill it, and later

(below) erase the unwanted edge boundary portions with non-electrode fills (see example

in rotate_edge_fill below).

I.3.24 rotate_edge_fill or: rotate_edge_fill_volume

Format:
rotate_edge_fill(angle_of_revolution)

{ }

Default Values: rotate_edge_fill(360) { }

Class: Fill Class

When Legal: Base Nesting Level

Defines a volume of revolution edge fill using the currently active point type and potential.

It raises the nesting level to Fill Nesting Level within its scope (e.g. { }). Its scope must

contain at least one Within or Notin instruction. If no Within instruction is supplied,

the point is assumed within, subject to rejection by Notin tests. There is no limit to

the number of Withins or Notins that can appear inside the scope of a Fill Class

instruction.

Each Within or Notin instruction defines a separate area of intersection with upper half

of the xy-plane (z = 0 and y >= 0) through the use of tests (e.g. circle()). The coordi-

nate system used is the coordinate system’s scope that rotate_edge_fill instruction

appears in. Locate instructions appearing within the scope of the rotate_edge_f-

ill do not change this test coordinate system. They merely change where the tests may

intersect its xy plane.

This fill area is then rotated ccw angle_of_revolution degrees around the x-axis

looking down the positive x axis toward the origin (same as rt angle in locate). All

potential array points that fall on the EDGE of this volume of revolution will be changed to

the currently active type and potential.

Section I.3. Geometry Instructions | I-25

The .GEM file fragment below uses a rotate_edge_fill to create a parabolic grid. It

is important that you take the time to understand this instruction fragment if you are to

successfully use rotate_edge_fill properly.

;fragment below makes a 180 degree parabolic mirror grid surface

pa_define(101,101,101,p,n) ;101, 101, 101 3D planar non-mirror

locate(10,50,50) ;locate point of rotation for grid center

{

e(1) ;use one volt electrode points

{

rotate_edge_fill(180) ;180 degree rotate fill

{ ;parabolic mirror in x-axis direction

within{locate(,,,,,-90){parabola(0,0,10)} box(0,0,50,100)}

}

}

n(0) ;zero volt non-electrode to erase

{

fill ;erase edge electrodes cut planes

{ ;erase edge electrodes in z = 0 plane

within{locate(,,,,,-90){parabola(0,0,10)} box3d ←֓

(-0.5,-1000,0.5,1000,1000,0)}

;erase edge electrodes in x = 50 plane

within{box3d(49.5,-1000,-1000,50.5,1000,1000)}

}

}

}

Creates a 180 degree parabolic grid in the x-axis direction in a 3D array. Note: The use of a

locate instruction to rotate the parabola into an x-axis parabola. The second fill (volume

fill - fill) is used to erase edge electrode points at the z = 0 and x = 50 cut planes. This

results in a half a parabolic grid with no grids in the cut planes.

I.3.25 rotate_fill or: rotate_fill_volume

Format: rotate_fill(angle_of_revolution) { }

Default Values: rotate_fill(360) { }

Class: Fill Class

When Legal: Base Nesting Level

Defines a volume of revolution fill using the currently active point type and potential. It

raises the nesting level to Fill Nesting Level within its scope (e.g. { }). Its scope must

contain at least one Within or Notin instruction. If no Within instruction is supplied,

the point is assumed within, subject to rejection by Notin tests. There is no limit to

the number of Withins or Notins that can appear inside the scope of a Fill Class

instruction.

Each Within or Notin instruction defines a separate area of intersection with the upper

half of the xy-plane (z = 0 and y > 0) through the use of tests (e.g. circle()). The co-

ordinate system used is the coordinate system’s scope that the rotate_fill instruction

I-26 | Chapter I. GEOMETRY FILES (GEM FILES)

appears in. Locate instructions appearing within the scope of the rotate_fill do

not change this test coordinate system. They merely change where the tests may intersect

its xy plane.

This fill area is then rotated ccw angle_of_revolution degrees around the x-axis looking

down the positive x-axis toward the origin (same as rt angle in locate). All potential

array points that fall within this volume of revolution will be changed to the currently active

type and potential.

The .GEM file fragment below uses two rotate_fills to create the internals for a spher-

ical ESA. It is important that you take the time to understand this instruction fragment if

you are to successfully use rotate_fill properly.

;fragment below makes inner workings of spherical ESA

pa_define(101,101,101,p,n) ;101, 101, 101 3D planar non-mirror

locate(50,10,10) ;locate point of rotation for ESA

{

e(1) ;use one volt electrode points

{

rotate_fill(90) ;90 degree rotate fill

{ ;inner spherical surface

within{circle(0,0,40) centered_box(0,0,70,200)}

}

}

e(2) ;use two volt electrode points

{

rotate_fill(90) ;90 degree rotate fill

{ ;outer spherical surface

within{centered_box(0,0,70,140)} ;90 degree solid cylinder

notin{circle(0,0,60)} ;with spherical inner surface

}

}

}

The above example creates a 90 degree spherical ESA in a 3D array. The inner electrode is

one volt with a spherical radius of 40 and a width of 70. The outer electrode is two volts

with a spherical radius of 60 and a width of 70. This might serve as starting point for a real

.PA# definition file for a 90 degree spherical ESA.

I.3.26 sphere or: ellipsoid

Format: sphere(xc, yc, zc, rx, ry, rz)

Default Values: sphere(0,0,0,10,10,10)

Class: Test Class

When Legal: Within Nesting Level

Defines 3D sphere or ellipsoid. Parameters define the center and radii. Note: If ry is

defaulted, ry will be set to rx. Likewise, if rz is defaulted, rz will be set to ry. Returns

TRUE if point is within its bounds.

Section I.3. Geometry Instructions | I-27

sphere(15,20,30,45,20,45)

Defines and ellipsoid centered at 15x, 20y, 30z with radii of 45rx, 20ry, 45rz.

I.3.27 within

Format: within { }

Default Values: NA

Class: Within Class

When Legal: Fill Nesting Level

Must be called from inside the Fill Nesting Level (within a Fill Class instruction: fil-

l). Holds one or more Test Class instructions within its scope that define a volume (3D

potential array) or area (2D potential array). There is no limit to the number of Test Class

instructions that can appear within the scope of a Within Class instruction.

If a potential array point is contained within the intersection volume (or area) expanded

0.5 grid unit (as projected) of the tests in its scope a TRUE is returned. Thus, all the test

class instructions (e.g. circle()) inside the scope of a Within Class instruction (e.g.

within{}) must return TRUE for the Within Class instruction to return TRUE to the Fill

Class instruction.

All that is required for a point to be considered within a fill’s volume is that at least one

Within instruction returns a TRUE. This within designation will be revoked if at least one

Notin instruction returns a TRUE.

fill

{ ;within right half of ellipsoid

within{sphere(0,0,0,50,30,50) box(0,-30,50,30)}

notin{sphere(0,0,0,45,25,45)} ;notin inner ellipsoid

}

The example above creates the right half of a ellipsoid shell (x >= 0) centered at 0x, 0y, 0z

and an outer shell of 50rx, 30ry, 50rz with an inner shell of 45rx, 25ry, 45rz.

I.3.28 within_inside

Format: within_inside { }

Default Values: NA

Class: Within Class

When Legal: Fill Nesting Level

Must be called from within at the Fill Nesting Level (within a Fill Class instruction: fi-

ll). Holds one or more Test Class instructions within its scope that define a volume (3D

I-28 | Chapter I. GEOMETRY FILES (GEM FILES)

potential array) or area (2D potential array). There is no limit to the number of Test Class

instructions that can appear within the scope of a Within Class Instruction.

If a potential array point is contained within but not on or outside the intersection volume

boundary (or area) of the tests contained in its scope, a TRUE is returned. Thus, all the

test class instructions (e.g. circle()) inside the scope of a Within Class instruction (e.g.

within{}) must return TRUE for the Within Class instruction to return TRUE to the Fill

Class instruction.

Note: All that is required for a point to be considered NOT within a fill’s volume is that at

least one Notin class instruction returns a TRUE.

fill

{ ;within right half of ellipsoid

within_inside{sphere(0,0,0,50,30,50) box(0,-30,50,30)}

}

The example above creates the right half of an ellipsoid (x >= 0) centered at 0x, 0y, 0z and

an outer shell of 50rx, 30ry, 50rz. Note: Points actually on the ellipsoid boundary are

NOT included. Only points that are physically inside the boundary (but not exactly on it)

will be considered within.

Note: The normal within also includes as within all points that are within 0.5 grid unit

(as projected) of the volume boundary. This can cause problems when changing scales

with holes created in electrodes (e.g. surfaces of revolution - rotate_fill()) using

non-electrode points and withins (e.g. hole sizes are not preserved predictably).

The within_inside and the within_inside_or_on were added to enhance the

power of the within class of commands for use in geometry definitions where change of

scale (e.g. doubling) could lead to unexpected within size changes.

I.3.29 within_inside_or_on

Format: within_inside_or_on { }

Default Values: NA

Class: Within Class

When Legal: Fill Nesting Level

Must be called from within at the Fill Nesting Level (within a Fill Class instruction: fi-

ll). Holds one or more Test Class instructions within its scope that define a volume (3D

potential array) or area (2D potential array). There is no limit to the number of Test Class

instructions that can appear within the scope of a Within Class Instruction.

If a potential array point is contained within, on, but not outside the intersection volume

boundary (or area) of the tests contained in its scope, a TRUE is returned. Thus, all the

test class instructions (e.g. circle()) inside the scope of a Within Class instruction (e.g.

within{}) must return TRUE for the Within Class instruction to return TRUE to the Fill

Class instruction.

Note: All that is required for a point to be considered NOT within a fill’s volume is that at

least one Notin class instruction returns a TRUE.

Section I.4. Developing, Testing, and Using Geometry Files | I-29

fill

{ ;within right half of ellipsoid

within_inside_or_on{sphere(0,0,0,50,30,50) box(0,-30,50,30)}

}

The example above creates the right half of an ellipsoid (x >= 0) centered at 0x, 0y, 0z.

Note: No points that are even slightly outside the outer boundary are considered within.

Note: The normal within also includes as within all points that are within 0.5 grid unit

(as projected) of the volume boundary. This can cause problems when changing scales (e.g.

hole sizes are not preserved predictably).

The within_inside and the within_inside_or_on were added to enhance the

power of the Within class of commands for use in geometry definitions where change of

scale (e.g. doubling) could lead to unexpected within size changes.

I.4 Developing, Testing, and Using Geometry Files

SIMION provides geometry file development tools within the Modify function (Figure I.5).

Geometry files can be utilized by either New or Modify to define electrode geometry.

I.4.1 Geometry Examples Provided With SIMION

There is a collection of geometry file examples in the examples\geometry subdirec-

tory (in the SIMION program folder). This directory contains a collection of trivial and

non-trivial examples. Examples include: ESAs, quads, traps, lenses, and ICR cells. The

New function can be used directly on most of these .GEM files to quickly see what they

create. It is intended that they should serve to get you started on your geometry file ad-

ventures. Be sure to scan the README.html file in the subdirectory for any directions

and/or cautions.

I.4.2 Accessing Geometry Files Via the New Function:

When you click on the New button (on the Main Menu Screen) or try to Modify an empty

potential array (automatically invoking the New function), the potential array definition

screen has a Use Geometry File button. If you click this button, the file selection dialog box

will ask you to select a geometry file to be automatically inserted in the new potential array.

If you have a pa_define instruction as the first instruction in the selected .GEM file,

SIMION will use it (in lieu of the New definition screen values) to create the desired poten-

tial array.

Note: When inserting geometry files from the New Function, the initial transformation will

always be defaulted to no transformation (identity transformation). Thus your .GEM file

must contain all the transformations required to place the geometry properly in the target

potential array.

If you have a geometry compiler error, you must use the geometry file development tools in

Modify (via the GeomF button) to find and fix the problem(s).

I-30 | Chapter I. GEOMETRY FILES (GEM FILES)

Figure I.5: SIMION’s Geometry Development Screen.

I.4.3 Accessing the Modify Geometry Development Tools

The geometry file development tools are accessed in Modify via the GeomF button (on lower

left edge of Modify screen). If there is no currently active .GEM file, SIMION will ask you to

select one via an automatic call to the file selection dialog box. Assuming you’re trying this

for the first time, switch to the examples\geometry directory and select trap1.gem.

The Geometry Development screen above (Figure I.5) will appear:

An Introduction to the GEM Development Tools: Figure I.5 above shows the Geometry

Development Screen. It is used to edit, test compile and insert geometry definitions into the

currently active potential array. Geometry development tools include a geometry language

compiler, Status Screen, .GEM file access buttons, positioning controls, and geometry in-

sertion and erasure controls.

Running Another Editor From SIMION: The geometry development tools access the

Notepad editor by default for geometry file inspection and modification. If you prefer an-

Section I.4. Developing, Testing, and Using Geometry Files | I-31

other text editor, see Appendix G (Text Editing) on how to link SIMION to your editor

The Geometry File Development Cycle: The geometry file development cycle involves

the following steps:

1. Create a new geometry file.

2. Test compile and edit until there are no compiler errors.

3. Insert the geometry into the potential array and examine it.

4. If there are geometry errors, edit geometry file, erase potential array, and repeat from

step 2.

Creating a New Geometry File: You may now use the editor (Notepad by default) to

type in your geometry file. Be sure to use indention to define your nesting levels (as in

the examples above). Indention of nested instructions makes them much easier to read and

understand later. Be sure to use comments to improve geometry instruction readability.

Name and save your file (with an extension .GEM, e.g. TEST.GEM).

Now, click the New button in SIMION to create a blank potential array to use with the

geometry definitions (you may want to Remove all PAs from RAM first to reduce the clutter).

If there are errors in the GEM file, you can enter the Modify screen and click GeomF and

then cilck Compile. If the compiler finds an error it will beep and display a message to tell

you what it didn’t like. Errors are also written to the .GER file (e.g. TEST.GER is error

file for TEST.GEM). Click the View .GER File button to access the .GER file.

There are times when a more complete listing may help you to understand what is going

on with the compiler. This is done by selecting the Xref check box before clicking the Co-

mpile button. The compiler then generates a complete cross-reference listing to the Status

Screen and .GER file (even if there are no errors). The cross-reference listing is useful in

understanding how the compiler interpreted the various geometry instructions.

Editing the Current .GEM file: Normally the error message on the Status Screen is

enough to point out your error. To edit the current .GEM file, you may click the Edit button.

The editor will be called (Notepad by default), allowing you to the fix the error, re-save the

file, quit the editor, and recompile.

Erasing the Potential Array: The Erase Entire PA button is provided to allow you to

remove all electrode/pole definitions from the potential array before inserting geometry

definitions into it. When an array is erased, all points are converted to non-electrode

(pole) points of zero volts (Mags). Use this button between successive geometry insertion

attempts to remove the clutter of the past.

Warning

This erases everything in the potential array - not just what was inserted by the

geometry file.

Inserting Geometry Definitions Into a PA: The Insert into PA button is used to actually

insert geometry definitions into the current potential array. When this button is clicked the

geometry compiler compiles the selected .GEM file (and all its include files). If there are no

I-32 | Chapter I. GEOMETRY FILES (GEM FILES)

errors the geometry definitions are then added to the potential array. Note: Your potential

array is not erased first (that is your responsibility). Geometry definitions are added to any

that may already be in the potential array. A progress bar at the bottom of the screen is

provided to assure you SIMION has not died.

Using the Initial Transformation: While your .GEM file will probably contain one or

more Locate instructions, you may still want final control over just where these geometry

definitions actually are placed in your potential array. SIMION provides panel objects that

can be used to define this initial transformation. You may think of the initial transformation

as the outermost Locate instruction (the entire .GEM file is within its scope). Normally

(by default or if the Default Position button is clicked) this transformation does nothing

(identity transformation).

As an example, let’s say that we want to double the potential array twice and then insert

the geometry into this expanded array. We would Double the array twice, click the Geo-

mF button, erase the potential array, set the scale to 4.0 (to compensate for array doubling

twice), and insert the geometry into the potential array. The main advantage of doing things

this way (instead of simply doubling the array) is that the resulting geometry is smoother

(none of the Double caused jags).

