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bstract

Benchmark evaluations of the accuracy of Simion 3D, a finite difference ion optics package, are presented for electron motion in a spherical
apacitor (SC) or ideal hemispherical deflector analyzer (HDA). The fractional errors (FE) [FE ≡ (simulation-exact)/exact] for potential, electric
eld, trajectory radius and time-of-flight (TOF) are characterized in detail over a wide range of systems and include comparisons of Monte Carlo
enerated line shapes at the first-order focusing plane. Simple theoretical models based on a first-order perturbation treatment are provided to
xplain, predict, and even correct the trajectory radius and TOF errors over the central region of any HDA. Our results are summarized in tables,
caling formulas, and practical guidelines.
2006 Elsevier B.V. All rights reserved.
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. Introduction

Simulating the trajectories of charged particles, such as elec-
rons and ions, is an indispensable aid in the design and testing of
xperimental devices such as energy analyzers and time-of-flight
TOF) spectrometers. However, for the results to be trustworthy,
he limitations and accuracy of such simulations must be well
nderstood and tested. A simple way to evaluate this accuracy is
o simulate a trajectory that can be independently calculated to
igh accuracy, such as one that can be solved analytically. Ke-
ler orbits of charged particles in a spherical capacitor (SC) is
ne such example [1]. The SC (see Fig. 1) has the advantage that
t is a closed system with well-defined electrode boundaries, it
oes not suffer from fringing fields, and non-relativistic trajecto-

ies are analytically described. More practically, the electrostatic
eld in an SC is identical to that of an ideal hemispherical de-
ector analyzer (HDA), thereby making the SC ideally suited for
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enchmark evaluations of the accuracy of ion optics simulations
1–4] of an HDA.

HDAs are often simulated by various ion optics packages
uch as Simion 3d [5], CPO-3D [6] and OPERA [7], to name
few. In our laboratories, we have used Simion 3d extensively

o simulate lenses [8] and HDAs [9] for electron spectroscopy
ecause of its relatively low cost and ease of use. However, no
etailed information on the accuracy and limitation of simula-
ions pertaining specifically to HDAs is available. Cubric et al.
1] have used an SC, as well as other electrode configurations,
o report general benchmark intercomparisons of computational
ccuracy versus computational speed for various ion-optics sim-
lation approaches. Dahl [3] also gave some rather general lim-
ts on the accuracy of Simion 3d kinematics and reported on
rajectory evaluations for motion in an ideal cylindrical mirror
nalyzer. The inherent geometric limitation in the modeling of
urved electrode surfaces by fixed-size square (2-D) or cubic (3-

) unit constructs, as used in finite difference packages such as
imion, can be a limiting factor on the accuracy of the particle

rajectories. While the effects of mechanical imperfections in
lectrode geometry construction on the electron-optical proper-

mailto:tzouros@physics.uoc.gr
dx.doi.org/10.1016/j.ijms.2006.08.005
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Fig. 1. (Color on line) Cross sectional view of the spherical capacitor. The
principal ray launched at radius R0, with kinetic energy K0(= w) and angle
α = 0◦ goes through Rπ at the first-order focusing plane (ω = 180◦). The values
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Table 1
SC dimensions and associated parameters of the principal ray describing a circle
of radius R0 = R̄ = 101.6 mm, pass energy w = 1000 eV and unbiased entry
potential Ṽ0 ≡ Ṽ (R0) = 0

Mean radius (mm) R̄ 101.6
Radius inner sphere (mm) R1 72.4
Radius outer sphere (mm) R2 130.8
�R (mm) R2 − R1 58.4
Interradial electrode spacing ρ �R/R̄ 0.5748

Voltage inner sphere (V) Ṽ1 806.6298
Voltage outer sphere (V) Ṽ2 −446.4832
�Ṽ (V) Ṽ2 − Ṽ1 −1253.113
Potential constant (V-mm) k −203200
Potential constant (V) c −2000

Ēr (V/mm) − �Ṽ
�R

21.4574

Principal ray:
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with radius r0, kinetic energy K(r0) = (1/2) m v2 and launch-
f the radii R0, Rπ , the potential Ṽ0 = Ṽ (R0) and pass energy w determine the
C voltages Ṽ1, Ṽ2. A general ray launched at r0 < R0 with pass energy t > w
nd α > 0◦ is also shown.

ies of an HDA have been investigated [10,11], no such analysis
as been attempted to our knowledge for simulated electrode
eometries.

Here, we investigate the accuracy of simulated SC trajec-
ories and its dependence on the electrode modeling error.
pecifically, we report on detailed benchmark evaluations of

he accuracy of Simion 3d v.7 [5] using an SC with a mean
adius R̄ = 101.6 mm, typical of fairly large HDAs [12] and
sed in our laboratory for Auger spectroscopy of ion–atom
ollisions [13–15]. Characteristic SC parameter values used
re given in Table 1. We first determine the accuracy of the
imulated potential, electric field, electron trajectory radius
nd TOF for various well specified trajectories, presenting
hese in the form of fractional errors (FE) as a function of the
rbit angle ω. For ω = π, the HDA first-order focus plane of
articular importance to electron spectroscopy, point source
ine shapes are also generated using Monte-Carlo techniques
nd compared. We then examine how the trajectory radius
nd TOF FEs depend in a predictable way on the interradial
lectrode spacing ρ ≡ (R2 − R1)/R̄ for ρ = 0.18 − 0.97 and
imulation grid densities λ = 1 − 10 gu/mm. Finally, using the
enerated FE data we present and test simple theoretical models
ithin the context of a first-order perturbational approach to

elate the electrode modeling errors to the Simion trajectory
Es for the central trajectories, predicting their values to within
bout ±5%. A brief, but complete, introduction of Kepler orbits
n an ideal SC is included together with a short description of
imion. Further details are delegated to the two appendices.

These results should be of direct practical use primarily to

nvestigators trying to model the electron-optical properties of
DAs using Simion 3d generated trajectories. However, our
ethodology, benchmark evaluations, analysis and theoretical

i
i
p

Total energy (eV) E0 −1000
Kinetic energy at R0 (eV) K0 1000
Semi-major axis length (mm) a0 101.6

odeling should also be of more general interest to the extended
harged particle optics community.

. Theory

We begin with a very brief introduction to the theoretical
reatment of trajectories within the 1/r potential (Kepler orbits)
f an SC or ideal HDA [16]. The equations presented here for the
otential, electric field, trajectory radius, and TOF are then used
hroughout the paper without further explanation. More detailed
nd specialized results needed in our investigation are presented
n Appendix A.

.1. Trajectory equations in the ideal 1/r potential

The potential Ṽ (r) and radial electric field Er of an SC (see
ig. 1) are given by

˜ (r) = Ṽ (k, c, r) = −k/r + c (1)

r(r) = Er(k, r) = −k/r2 (2)

ith

� = −�∇Ṽ = Er r̂ (3)

or voltages Ṽi ≡ Ṽ (Ri) (i = 1, 2) used on the SC electrodes,
he constants k and c can be directly evaluated from Eq. (1):

≡ c(R1, R2) = R2Ṽ2 − R1Ṽ1

�R
(4)

≡ k(R1, R2) = �Ṽ

�R
R1R2 (5)

ith �R ≡ R2 − R1, �Ṽ ≡ Ṽ2 − Ṽ1.
The orbit of a particle with charge q inside the SC is in gen-

ral an ellipse (Kepler orbit) and can be parameterized by the
ngle ω over a complete orbit. For a particle launched at ω = 0◦
0
ng velocity angle α, the elliptical orbit will be characterized by
ts semi-major axis a, its eccentricity ε and the conserved total
article energy E < 0. The non-relativistic trajectory, radius rω
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nd TOF Tω, have been derived in detail in ref. [16] and have
he simple functional form:

ω = rω(k) ≡ r(r0, ηk, α; ω)

= r0

[(1 − cos ω)/((1 + η) cos2 α)] + cos ω − tan α sin ω

(6)

ω = Tω(k) ≡ T (r0, ηk, α; ω)

= r0

√
m r0

q k
(1 + η)3/2 cos3 α I(η, α, ω) (7)

here the parameter η ≡ ηk = η(r0, q k, K) and the integral
(η, α, ω) are given by:

(r0, q k, K) ≡ 1 − r0

a
= 2 r0 K(r0)

q k
− 1 (8)

(η, α; ω) ≡
∫ ω

0

dω′

[1 − (1 − η) cos α cos(α + ω′)
+ cos(2α + ω′)]2

(9)

nd the elliptical orbit parameters by [16]:

= − q k

2 E
(semi-major axis) (10)

= K(r0) − q k

r0
(conserved total energy) (11)

=
√

sin2 α + η2 cos2 α (eccentricity) (12)

he angle α determines the direction of the velocity vector �v0
elative to the orbit radius �r0 at the launching point with ω = 0◦
16]:

in α ≡ �v0 · �r0

v0 r0
(13)

or α = 0◦, the two vectors are perpendicular to one another
nd the particle is at its smallest orbit radius or periapse [16].
e note that the conserved total energy E is always negative

or bound motion and depends only on k. Thus, particle motion
nside the SC is independent of the potential constant c. Adding
constant voltage V to both Ṽ1 and Ṽ2, increases c by V (see Eq.

4)) but does not affect the value of k (see Eq. (5)), and therefore
he trajectories remain unchanged.

When the eccentricity is zero, i.e. ε = 0, much simpler circu-
ar orbits result. Directly from Eq. (12), both conditions a = r0
η = 0) and α = 0◦ must apply simultaneously and therefore:

Circular orbits :

ε = 0, a = r0, α = 0,
(14)

= −K(r0), K(r0) = q k

2 r0
, η = 0 (15)
ω = r0 (16)

ω = r0 ω

√
m

2 K(r0)
(17)

w
f

t
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or electrons (q = −e), with the m = me = 5.485799030 ×
0−4 amu, we then have for circular orbits the practical formula:

ω = 2.942738 × 10−2 ns

[
r0(mm) ω(dgrs)√

K(r0)(eV)

]
(18)

he voltages Ṽ1 and Ṽ2 are determined by “tuning” the SC to a
articular reference trajectory known as the principal ray [16]
see Fig. 1). Here, we shall limit our investigation to conventional
DA usage, always taking the principal ray to be a circle of

adius R0 = R̄ with entry potential Ṽ (R0) = 0. Then, according
o Eq. (A.17) of Appendix A the SC voltages for electrons are
iven by:

˜
i = 2 w

(
R̄

Ri

− 1

)
(i = 1, 2) (19)

n this paper we shall always use a pass energy w = 1000 eV and
¯ = 101.6 mm for which potential constants k and c (Eqs. (4)
nd (5)) are always fixed to the same values, i.e. k = −203200
nd c = −2000, even when varying the SC interradial electrode
pacing ρ (see Section 5.3). Orbits with three different entry
adii r0 are investigated. The values of the SC parameters and
rajectory variables for circular orbits (I, II and III) used in our
valuation of Simion accuracy are listed in Tables 1 and 2.

. Experimental method—Simion

Simion is a powerful, user-friendly ion-optics PC software
sed to calculate electric and/or magnetic fields (quasi-static)
rom user-supplied geometries and to simulate the trajectories
f charged particles flying through those fields. Simion has be-
ome very popular and is widely used as an aid in the design
f spectrometer components and lens systems (for some recent
xamples see [8,17–29]). For more details, the interested reader
s referred to the Simion manual [5,30] and associated literature
3].

Simion makes use of potential arrays (PA), which define
xed-sized square (2-D geometry) or cubic (3-D geometry) grids
f elements on which electrodes are represented (see Fig. 2
op). The potential on each electrode point must be defined by
he user, while the resulting potentials of the grid points be-
ween the electrodes are calculated by Simion which solves the
aplace equation using an optimized over-relaxation finite dif-

erence approach (refining process). The electric field vector is
hen computed by taking the gradient of the calculated potential.
imion’s finite difference techniques use the average potential
f the nearest four (2-D geometry) or six (3-D geometry) neigh-
oring grid units as the basis for estimating the potential of each
on-electrode point, so numerical results could differ slightly
epending on the 2-D, 3-D, or symmetry representation used.

workbench strategy allows different PA sizes, symmetries,
nd grid densities to be used in the same simulation. After the
elds are solved, charged particles – given launching position,
inetic energy and direction – can be readily flown through space

ith their trajectories computed relativistically using accurate

ourth-order Runge-Kutta techniques.
In the first part of this investigation, we examine the SC sys-

em described in Table 1 when modeled in three distinct ways
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Table 2
Theoretical electron trajectory parameters for circular orbits I, II and III having α = 0◦ and a = r0 in the field of the spherical capacitor specified in Table 1

Circular orbit

I II III

Radius (mm, Eq. (6)) r0 81.6 101.6 121.6
Kinetic energy (eV, Eq. (15)) K(r0) 1245.098 1000 835.5263
Potential (V, Eq. (1)) Ṽ (r0) 490.1961 0 −328.9474
Er-field (V/mm, Eq. (2)) Er(r0) 30.5171 19.6850 13.7422
Total energy (eV, Eq. (15)) E −1245.098 −1000 −835.5263
TOF (ω = 180◦) (ns, Eq. (17)) Tπ 12.2493 17.0183 22.2831
TOF (ω = 360◦) (ns, Eq. (17)) T2π 24.4985 34.0366 44.5662

Fig. 2. (Color on line) SIMION electrode geometries. (Top) Left: geometries A and B—SC modeled with 2-D quarter circle in XY plane. (Top) Right: geometry
C—SC modeled with 3-D eighth of sphere in positive octant. The cross-section of the 3-D figure in the XY (Z = 0) plane is identical to the 2-D figure. Of special
concern in this investigation is the inherent error introduced by the modeling of curved electrodes by squares (2-D geometry) or cubes (3-D geometry) and its
effect on the particle trajectories. In the inserts (top left), a more detailed look of two parts of the inner electrode surface construction of geometry A is shown.
(Bottom) Left: variation of surface radii errors d1,j , d2,j with ω for geometry A. Geometry C results, not shown, are similar. The mean values are 〈d1〉 = 0.0017 gu
and 〈d2〉 = 0.0018 gu, shown as the red straight lines in the plot and listed in Table 5 (nw). The green wavy lines are smoothed ±5◦ adjacent point averages. Due
to the symmetric way the electrodes are generated the observed structure is exactly repeated every 90◦. (Bottom) Right: same as left but for geometry B with
〈d1〉 = 0.0619 gu and 〈d2〉 = −0.0459 gu. The standard deviations in di,j used in the quadrature error propagation model are very close to 0.26 ± 0.1 gu and are also
listed in Table 5 (quad).
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Table 3
Specifications of the Simion electrode design geometries A, B and C

Geometry

A B C

Dimensionality 2-D 2-D 3-D
PA symmetry/mirroringa,b c/xy c/xy p/xzy

Grid density λ (gu/mm) 1 10 1
Grid dimensions (gu) 150 1500 150
PA size (kB) 176 17579 26368
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he corresponding Simion geometry files are listed in Appendix B.1.
a Symmetries: c, cylindrical around x-axis; p, planar.
b Mirroring: enabled in x, y, z directions.

referred to as geometries A, B and C – shown in Table 3 and
he Simion geometry files in Appendix B.1. Geometries A and

are 2-D representations, B using ten times higher grid den-
ity (grid units (gu) per mm) than A, whereas geometry C is
3-D representation. The 2-D models contain two concentric

uarter-circles lying in the positive quadrant of the XY (Z = 0)
lane (see Fig. 2 top), which when mirrored in the negative x
irection and subsequently rotated through 360◦ around the x-
xis (cylindrical symmetry) represent the two full spheres. The
-D models utilize two concentric one-eighth spheres (positive
ctant), which when mirrored in all three negative x, z and y
irections represent the two full spheres as well.

With these settings, electrons were “flown” in the equa-
orial (Z = 0) XY plane in all three geometries A, B and

and launched at ω = 0◦, with xsim = x = r0, ysim = y =
, kinetic energy Ksim(r0) = K(r0) and injection angle α set
hrough Simion velocity elevation angle Elv = −90◦ ± α and
zimuth angle Azm = 0◦ (see Fig. 1). While flying the elec-
rons, Simion recorded all required data at each time-step Tsim
nto a file for evaluation. The values recorded were the posi-
ion coordinates xsim and ysim, from which the radius rsim and
he orbit angle ω were calculated according to Eqs. (25) and
26), the time-of-flight TOFsim(ω) and the kinetic energy er-
or �Ksim(ω). �K measures change in total energy, ideally
ero under conservation of energy, so a non-zero value indi-
ates simulation error. All theoretical parameters were calcu-
ated according to the equations presented in Section 2 and
ppendix A using the official 2002 CODATA recommended val-
es [31] for 1 amu = 931,494,043 eV and the speed of light =
99.7924580 mm/ns, also used by Simion.

One of the main goals of this paper is to quantify the elec-
rode surface modeling errors and use them to predict the errors
een in the trajectories. We note that the particular geometries
, B and C chosen for this study are representative of typical
imion usage and, in particular, demonstrate clearly the effect
f the curved electrode inaccuracies on the trajectories. How-
ver, as noted by Dahl [3] in his investigation of the cylindrical
irror analyzer, improved accuracy can be attained by judicious

hoice of symmetry and integrally aligned electrode boundaries
o minimize or eliminate the modeling error in the electrodes. As

nvestigated in Appendix B.5, such an approach is only partly
ossible with the SC, and gives limited improvement, by using
ylindrical symmetry with integrally aligned electrodes in the
= 0 plane (geometry B) and flying electrons in the X = 0

a

F
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lane. We instead concentrate the main part of this study on the
ore general case of flying electrons in the Z = 0 plane where

o such alignment is possible, even with cylindrical symmetry.
The modeling error can be computed at each point j on

he electrode surface and is defined by �Ri,j ≡ Ri simj
− Ri

for surface i = 1, 2), or in grid units by di,j ≡ �Ri,jλ. Here,
i simj

is the radial distance from the origin to point j in the
imulated model, and Ri are the nominal (theoretical) values
f the SC radii given in Table 1. The values of Ri simj

(Fig. 2
op) can be readily extracted from the Simion potential array
y measuring the radial distance to each surface electrode
oint. We have taken a more convenient approach of computing
hese values theoretically from the same discretized equation
f the sphere that Simion uses to generate the potential array
n the first place (circle or sphere commands in the .gem
les in Appendix B.1). This is automated using Perl script
c list surface points.pl. Our script first defines the
surface count” of a given electrode grid point as the number
f non-electrode grid points that are orthogonally adjacent to
t. Thus, a surface count of 0–4 (for 2-D geometries) or 0–6
for 3-D geometries) can be assigned to any grid point. A grid
oint with a surface count of zero is ignored because it lies
ust away from the surface and is invisible to the four-point
2-D geometries) or six-point (3-D geometries) finite difference
ethods, which look only at the orthogonally adjacent points.
he code compiles a list of all grid points (xj, yj, zj) with
on-zero surface count, thereby constituting the set of all
surface points” S. For each such point j ∈ S the surface radius,

i simj
(i = 1 or 2), is computed as Ri simj

=
√

x2
j + y2

j + z2
j

nd the angle ωj in the Z = 0 plane can also be assigned using
j = arctan(yj/xj) as shown in Fig. 2 (top).

As an illustration of the above procedure we show in Fig. 2
bottom) examples of the variation in the modeling errors di,j as a
unction ofω together with their means 〈di〉 in theZ = 0 plane. A
5◦ running average (green line) is included to make the general

rends more clear. The same variation pattern is repeated every
0◦ as expected from the symmetry in the models already shown
n Fig. 2 (top). The modeling errors are seen to be small with
heir mean very near zero (thick red line) and their variations
ounded within ±0.5 gu, indicating that the Simion geometry
le parameters in Appendix B.1 are indeed well chosen. The
ost significant sustained departures from zero are seen to occur

t ω = 0◦, 45◦ and 90◦. At these angles the simulated potential
nd electric field (given later in Section 5.1.1) show their largest
epartures from theory and constitute one of the chief causes of
rror accumulation in the trajectory.

. Computed fractional errors

Simion’s results (identified by the subscript ‘sim’) are
ecorded and compared to theory by presenting them in the form
f “normalized” fractional errors [1,3]. FE definitions for the po-
ential V, radial electric field Er, trajectory radius rω, TOF Tω
nd kinetic energy error �K are given below:

EV (ω) ≡ Ṽsim(rsim(ω)) − Ṽ (rsim(ω))

�Ṽ
(20)
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Fig. 3. (Color on line) Fractional errors (FE) in geometry A (top), B (bottom)
for the potential, radial electric field, trajectory radius, TOF and kinetic energy
e
u
a
b

c
h
Simion models (see Fig. 2 and Table 3). The sharpest features
occur every 90◦ in the inner-most (near surface, high field) or-
bit of the low-density geometries A and C. These variations are
seen to be clearly correlated to the modeling errors di,j shown
20 T.J.M. Zouros et al. / International Journ

EEr (ω) ≡ Ersim (rsim(ω)) − Er(rsim(ω))

Er(rsim(ω))
(21)

Er(ω) ≡ rsim(ω) − rω

rω
(22)

ETOF(ω) ≡ 10−6Tsim(ω) − Tω

Tπ

(23)

E�K(ω) ≡ �Ksim(ω)

Ksim(rsim(ω))
(24)

sim(ω) =
√

x2
sim + y2

sim (25)

≡ tan−1(ysim/xsim) (26)

˜ (r), Er(r), rω and Tω are the exact theoretical functions given
nalytically in Eqs. (1), (2), (6) and (7), respectively. On the other
and, Ṽsim(r), Ersim(r), rsim and TOFsim are the directly “mea-
urable” Simion quantities that will be used to test all proposed
heoretical models.

All FEs are defined as the difference between the Simion
omputed quantity and its exact (theoretical) value divided by a
ormalization value, often the theoretical value. This normaliza-
ion value is different in each case. In particular, the potential FE
as normalized to the difference �Ṽ since Ṽ itself can be zero

e.g. Ṽ0 = 0 – also note the sign as �Ṽ is negative for electrons.)
he TOF FE is normalized to the TOF for 180◦ deflection, Tπ.
urthermore, the factor 10−6 (see Eq. (23)) corrects the Simion
OF for the 1012 heavier electron mass (and therefore 106 times
lower) used in the simulation to avoid the relativistic correc-
ions normally applied by Simion (see Appendix B.2) but not
ncluded in the exact theoretical treatment.

. Results

We now present our data, the computed fractional errors as
function of the angle ω for circular and elliptical trajectories.
he data will be compared to the theoretical models developed

ater on in Section 6.

.1. Circular orbits with r0 = 81.6, 101.6, 121.6 mm and
= 0.5748

The computed FEs for Simion SC geometries A, B and C are
resented in Figs. 3 and 4 as functions of ω for the circular orbits
, II and III (Table 2). The same pattern is repeated exactly every
0◦ (in C) or 180◦ (in A and B). Errors in the higher grid density
eometry B are smaller having smoother electrode surfaces. The
bserved extrema in FEV and FEEr can be clearly correlated to
ne another and to the most significant extrema of the model
rror di,j (Fig. 2 bottom), particularly for the lower grid density
eometries A and C. The extent to which these extrema affect the
rajectory (FEr and FETOF) is less obvious. We discuss each FE
ariation in more detail pointing out the most important features.
.1.1. Variation of potential and electric field
The potential and radial electric field FEs, FEV and FEEr ,

how very clear repeated structures every 90◦ (in C) or 180◦ (in
rror (see Eqs. (20)–(24)) as a function of orbit angle ω. Note the scaling factor
sed to enlarge various FEs for better viewing. Increasing the grid density λ by
factor of 10 in going from A to B is seen to decrease the fractional variation
y roughly the same factor.

ylindrical A and B) that are symmetric around the period and
alf-period marks, as expected from the symmetry used in the
Fig. 4. (Color on line) Same as Fig. 3, but for geometry C.
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Fig. 5. (Color on line) Sensitivity on launching position—orbit angle ω0. (Right
scales): FEr (green triangles) and FETOF (blue circles) following deflection by
π, i.e. evaluated at ω = ω0 + π, are plotted as a function of the launching orbit
angle ω0. (Left scale) FEEr (red open squares) at launching position ω = ω0

(identical to FEEr in Figs. 3 and 4, but blown up in the y-scale and covering the
0–180◦ range only). Results are for motion in the XY (Z = 0) plane and for
the principal ray (orbit II) only, shown in Fig. 1, and geometries A, B and C.
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negative and positive α are seen to cross in geometry A and
T.J.M. Zouros et al. / International Journ

n Fig. 2 (bottom). In general though, the FEV values for the
wo innermost orbits (r0 = 81.6 mm and r0 = 101.6 mm) are
egative, while for the outermost orbit (r0 = 121.6 mm) they
re positive (note the ×4 and ×2 scaling factors in A and B).
ince �E = −�∇V , this explains the generally positive FEEr val-
es. However, particularly for r0 = 101.6 mm, there are also
ong stretches of constant FEEr showing the field to be relatively
ndependent of ω (and also of r as seen later in Fig. 10). This
ill be an important feature utilized in our theoretical models

ater on. As we shall see later, the positive value of FEEr may
e explained by an effective reduction in the fractional interra-
ial electrode spacing (ρ = �R/R̄) (see Eqs. (3) and (5)) even
hough that effect is not easily seen in the direct measurement
f modeling errors di,j in Fig. 2 (bottom).

.1.2. Variation of trajectory radius
The radial FE, FEr, is seen to be always negative (orbit radius

maller than theory), as explained by the generally positive FEEr

alues and Eq. (3). |FEr| increases monotonically from ω = 0◦,
eaches a maximum near ω = 180◦ and then decreases almost,
ut not exactly, back to zero again at ω = 360◦, i.e. it is almost
ymmetric around ω = 180◦. Sharp variations in the electric
eld along the particle orbit perturb the motion affecting the
bserved FEr of the particle, as most strongly seen every 90◦ in
he innermost orbit of A. FEr is found to be smaller in B than
n A and C by factors ranging between ∼ 3 and 15, showing the
mportance of increasing the grid density λ.

.1.3. Variation of trajectory TOF
The TOF FE, FETOF, is also negative in all three geometries,

s explained by the negative FEr and Eq. (17). As in the observa-
ion for FEr, the FETOF is seen to be smaller in B than in A and C
y a factor of ∼ 3–15. Interestingly, at ω = 180◦ FETOF and FEr
ppear to be nearly equal, a result we also derive theoretically
ater on.

.1.4. Variation of KE
The kinetic energy FE, FE�K, is seen to be smaller than all

ther FEs by at least 3 orders of magnitude, indicating that con-
ervation of energy during trajectory integration is well observed
32,33], in particular for B. Periodic maxima are seen in all three
eometries and appear correlated to the minima of FEV.

.1.5. Dependence on initial conditions—ω0 dependence
The variation of the electric field with ω also raises the ques-

ion of the dependence of the trajectory FEs on the specific
tarting point ω0. This dependence can be investigated by eval-
ating FEr and FETOF following a fixed length of 180◦ deflec-
ion. Since all orbit calculations are launched at x = r0, y = 0
ith ω = 0◦, in the clockwise direction (see Fig. 1) we have
(ω0) = r0 cos ω0, y(ω0) = −r0 sin ω0. Our FEs evaluated at
= ω0 + π with ω0 varying from 0 to 180◦ are shown in Fig. 5
or motion in the XY (Z = 0) plane in the three geometries A, B
nd C for the principal ray (orbit II r0 = 101.6 mm). At a partic-
lar value of ω0 the radial electric field is given on the left scale,
hile the values of the radius and TOF FEs after 180◦ deflection

B
l
t
n

ariations in FEr and FETOF at ω = ω0 + π are correlated to variations in FEEr

t the launching point ω = ω0. The launching point ω = 0◦ (see Fig. 1) used in
ll calculations presented in this paper, corresponds to ω0 = 0◦.

re given on the right scale; thus, apart from the cumulative ef-
ect of integrating along the fixed path length, correlation with
nitial electric field values can be more evident. The values of
Er and FETOF are seen to show some variation with ω0 leading

o a further overall maximum error of about ±10% around the
ean position in the two FEs in all three geometries. The start-

ng position dependent error for the principal ray orbit is listed
n Table 6 of the summary as the additional ± error.

.2. Elliptical orbits with |α| ≤ αmax, r0 = 101.6 mm and
= 0.5748

So far we have only investigated circular orbits for which we
lways have α = 0◦. Here we compare radial FEs as a function
f ω with α �= 0◦. Non-zero α values are also needed in the
eneration of line shapes at ω = 180◦, the first-order HDA focus
lane, and are therefore also included in this section.

.2.1. FEr(ω) for r0 = 101.6 mm and αmax = 5◦
Trajectories with α �= 0◦ are elliptical and therefore have a

ore varied distance from either electrode surface than the circu-
ar orbits already investigated. In Fig. 6, such FEr’s are presented,
hough only for trajectories with r0 = R̄. Again, geometry B is
een to give more accurate results than geometries A and C. In
articular, FEr(α, ω), while dependent in general on α, is seen
t ω = 180◦ to be relatively insensitive to α, whereas FEs for
, but not C, close to ω = 315◦. Overall, the α dependence, at
east for rays starting from r0 = R̄, introduces only small addi-
ions to the α = 0◦ radial FEs, which at ω = 180◦ are practically
egligible.
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ig. 6. (Color on line) Plots of the radial fractional error FEr(α, ω) as a function
f ω for geometries A, B and C with fractional interradial electrode spacing
= 0.5748. The lines correspond to trajectories for r0 = R̄ and |α| ≤ 5◦ with

n increment of 1◦.

.2.2. Line shapes at ω = 180◦ for a monoenergetic point
ource at r0 = 81.6, 101.6, 121.6 mm and αmax = 2◦

Both the absolute and relative radial FE can be investigated
t particular values of ω using Monte-Carlo techniques to gen-
rate line shapes. These line shape results are only relevant in
ccuracy evaluations of Simion since they reflect some kind of
umulative error averaged over the number of trajectories used.
ere, 100,000 electrons were flown with α randomly varied so

hat |α| ≤ αmax = 2◦. Theoretical line shapes were computed at
= 180◦ using Eq. (6). Generation of line shapes at this de-

ection angle is particularly relevant for spectroscopy since it is
ere that HDA exit slits or position sensitive detectors are placed
o take advantage of the first order focus point in α. Simion gen-
rated line shapes are compared to theory for geometries A, B

nd C in Fig. 7.

The peak positions are pulled in towards smaller exit radii,
ith peak position FEs very close to those determined from
= 0◦ trajectories evaluated at ω = 180◦ (see Figs. 3 and 4)

t
l
w
r

ig. 7. (Color on line) Comparison of line shapes generated by “flying” 100,000 elec
nd r0 = 121.6 mm (right) with random entry angles |α| ≤ αmax = 2◦. In each case, th
as used in the generation of each line shape: theory (Eq. (6)) and A, B and C corres
as used for averaging. For all three r0 values the geometry with the highest grid de
osition.
Mass Spectrometry 261 (2007) 115–133

nd in agreement also with observations for non-zero α values
iscussed in Section 5.2.1. The line shapes generated using ge-
metry B were always found to be the closest both to theory (as
as true of radial peak position), with geometry A coming in a

lose second. In geometry C, but only for the two outermost radii
0 = 81.6 mm and r0 = 121.6 mm, the line shapes are seen to
ave longer tails leading to increased base width and asymme-
ry. This reaffirms the increased sensitivity of the orbits closest
o the electrode surfaces, especially at low grid density. Both
Er(ω = π) and FEbw(ω = π) as determined from the peak po-
itions and base widths (bw) of the line shapes presented in Fig.
are listed in Table 6 with FEbw = (bwsim − bwtheory)/bwtheory.

We note that for the three r0 cases considered, only r0 =
¯ = 101.6 mm (Fig. 7 middle) really corresponds to a typical
lectron spectroscopy application (with the SC replaced by an
DA). The other two cases, r0 = 81.6 mm and r0 = 121.6 mm,

re unnatural for spectroscopy applications since the field in
he SC is set by a principal ray (R0 = Rπ = R̄ = 101.6 mm and

= 1000 eV) far removed from the ray pencils flown generating
he line shapes.

.3. ρ-dependence of FEs for principal ray

We next investigate the dependence of the FEs on the SC
ractional interradial electrode spacing ρ = �R/R̄ for fixed R̄ =
01.6 mm. We examine only the principal ray for five different
alues of ρ (given in Table 4) in the range ρ = 0.18–0.97. Similar
ependencies are seen in all three geometries as exemplified by
he results for geometry A shown in Fig. 8. For all FEs, the FE
ncreases with decreasing value of ρ, consistent with the picture
hat the closer the electrode surfaces come to the orbit the bigger
he effect of the surface errors on the trajectory and therefore the
arger the differences between simulation and theory. Though
ot shown, the FEs of geometry A and C were found to be
ery similar and always larger in magnitude by a factor of ∼10

han the FEs of geometry B, and the kinetic energy FEs were
arger by a factor of ∼200. These results are consistent with
hat was already found for ρ = 0.5748 at the other two radii

0 = 81.6 mm and r0 = 121.6 mm shown in Figs. 3 and 4.

trons from a point source at radii r0 = 81.6 mm (left), r0 = 101.6 mm (middle)
e launching kinetic energy K(r0) is indicated. The same set of random α-values
ponding to the respective Simion geometries (Table 3). A bin size of 0.02 mm
nsity (λ = 10 gu/mm – B) is seen to come closest to theory in both shape and
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Fig. 8. (Color on line) Same as Fig. 3 (geometry A), but for different fractional
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Fig. 9. (Color on line) Data points: λ R̄ FEr (closed symbols) and λ R̄ FETOF
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nterradial electrode spacings ρ = �R/R and with fixed R = 101.6 mm for all
alues of ρ. Lines: ρ = 0.1811 (continuous—black), ρ = 0.3779 (dash—red),
= 0.5748 (dot—green), ρ = 0.7717 (dash-dot—blue), ρ = 0.9685 (dash-dot-

ot—azure).

.4. λ and ρ-dependence of radius and TOF FEs for
rincipal ray at ω = 180◦

Finally, we explore both λ and ρ-dependence of the radius
nd TOF FEs for the principal ray at the first order focus plane
ω = 180◦). The data were generated at the five different values
f ρ, already shown in Fig. 8 for geometry A, each at electrode
ensities λ = 1–10 gu/mm in increments of �λ = 1. Thus, the
ntire geometry space between geometry A (λ = 1) and B (λ =
0) is covered. In Fig. 9, both FEs are shown as a function of
for each of the five values of ρ. The lines correspond to the

heoretical model which is described in the next section. The
ost striking feature is the clear 1/λ dependence of both FEs, in

greement with expectations. Also, as observed previously, both
adius and TOF FEs are found to be roughly equal at ω = 180◦
or the same λ and ρ.

. Theoretical model for FEr and FETOF

The fractional errors were presented and characterized in the
revious section. We now proceed to develop a theoretical model
o predict these errors more generally. The approach will follow
hat we have already observed: that the small modeling errors in

he simulated electrode radii, di,j , will induce slight inaccuracies
n the field (FEV and FEEr ), which will in turn perturb the particle
rom its theoretical trajectory (FEr and FETOF).

.1. Basic assumptions concerning the field error

In building the theoretical model, we shall assume the fol-
owing to be true:

1 − a) Ṽsim(r) ≈ Ṽ (ksim, csim, r) = Ṽ (k, c, r) + �Ṽ (27)
1 − b) Er sim(r) ≈ Er(ksim, r) = Er(k, r) + �Er (28)

2 − a) ksim = k(R1sim, R2sim) (29)

≈ k(R1 + �R1, R2 + �R2) = k + �k (30)

F

F

open symbols) for principal ray (circular orbits with r0 = R̄ = 101.6 mm and
= 0◦) in 2-D geometries at ω = π. Lines: theoretical empirical fit (ef) model

hown in Fig. 12.

2 − b) csim = c(R1sim, R2sim) (31)

≈ c(R1 + �R1, R2 + �R2) = c + �c

(32)

hese assumptions naturally lead to the following corollaries
oncerning the trajectory errors:

k and �c are r- and ω-independent (33)

sim(ω, ksim) ≈ rω(k + �k) = rω + �rω (34)

sim(ω, ksim) ≈ Tω(k + �k) = Tω + �Tω (35)

ssumption (1) requires that the Simion potential Vsim (and its
erivative the electric field Er sim) be modeled by the ideal po-
ential/field Eqs. (1) and (2), but with constants k and c replaced
y the new, slightly different constants ksim and csim.

Assumption (2) gives the values of the field constants ksim
nd csim in terms of the errors �k and �c. Furthermore, �k and
c are directly related to the modeling errors, �R1 and �R2,

n the electrode surfaces via Eqs. (4) and (5).
Corollary Eq. (33) is just a statement of the constancy

f the field and potential errors �k and �c. In particular,
t requires for simplicity that ksim (and csim) be both r- and
-independent, at least to first order. With the ω-independent
ssumption, the field perturbation has a simple form that can
e applied directly to the final trajectory equations (Eqs. (6)
nd (7)), which remains analytic. An ω-dependent perturbation
ould need to be implemented prior to solving the equations
f motion and would make the trajectory determination more
omplex and probably amenable only to a numerical treatment.
e note that since only k enters the equation of motion, we

hall not be interested anymore in c. It is useful to define

Ek as:

Ek ≡ ksim − k

k
= �k

k
(36)
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Table 4
Values of radii and voltages for the SC of Table 1 for five fractional interradial electrode spacings ρ = �R/R̄

ρ 0.181102 0.377953 0.574803 0.771654 0.968504

R1 92.40 82.40 72.40 62.40 52.40
R2 110.80 120.80 130.80 140.80 150.80
�R 18.4 38.4 58.4 78.4 98.4
Ṽ1 199.1342 466.0194 806.6298 1256.4103 1877.8626
Ṽ2 −166.0650 −317.8808 −446.4832 −556.8182 −652.5199
�Ṽ −365.1992 −783.9002

Radii are in (mm) and voltages in (V).

Then, according to assumption (1-b), in the limit that the Simion
field Er sim(r) approaches the ideal model field Er(ksim, r):

Er sim(r) ≈ Er(ksim, r) = −ksim/r2 (37)

we should have the equality:

FEk = FEEr (38)

In Fig. 10 (top), FEEr is plotted against the radius r (R1 ≤ r ≤
R2) in geometries A, B, and C. At each r the FEEr values are
averaged over all ω (typical trajectory) for clarity. We see that
FEEr is approximately constant only in a central region away
from the surfaces, so the ideal 1/r field assumption holds only
in this central region. However, the size of this region increases
with increasing λ (geometry B). Also shown in the same plots are
the values of FEk that model FEEr , evaluated at three different
values of constant ksim obtained by the corresponding model
calculation described in Section 6.3.

Fig. 10. (Color on line) (Top) Averaged measured FEEr over ω at each radius
r for geometries A, B, and C with corresponding labeled panels. Values are
roughly constant over the central region as assumed by the models also shown for
comparison. The positions of r0 at which the FEs of Figs. 3 and 4 were evaluated
are indicated by the arrows. (Bottom) The difference between the simulated and
exact theoretical potentials (which is proportional to FEV) is plotted over the
full XY (Z = 0) orbit plane of electron motion for geometry A (bottom left) and
B (bottom right). Geometry C (not shown) appears somewhat similar to A.
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Without the averaging over ω above, the individual FEEr val-
es in the central region vary with a standard deviation of about
0% (in B and C) or 50% (in A) across ω, as already observed in
igs. 3 and 4. Clearly, �k (and �c) are therefore to some extent
-dependent, contrary to corollary Eq. (33). Varying amounts of
-dependence were also seen in the related FEEr values in Figs.
and 4. However, the ω-dependence is less significant than that
f the underlying modeling errors, di,j , shown in Fig. 2 (bot-
om) due to the averaging effect of the finite difference method,
articularly away from the surfaces. The ω-independence as-
umption is also justified on the grounds that the trajectories
e are concerned with traverse a range of ω, thereby averaging
ut much of the remaining effect of the local deviations as the
egular behavior of Fig. 10 (top) suggests.

Fig. 10 (bottom) offers a more global perspective. The
ifference between the simulated and exact theoretical po-
entials, which is proportional to FEV, is plotted over the
ull XY (Z = 0) orbit plane of electron motion. (This is a
imion PE plot of a PA having potentials set by Perl script
c make verror pa.pl to this difference.) The sudden
eaks and sharp precipices indicated, particularly close to the
nner electrode surface ought to have a strong effect on orbits
losest to these perturbations. These structures are repeated pe-
iodically with ω having a clear correspondence with structures
lready observed in the FEV(ω) of Figs. 3 and 4. The surface in
eometry B is much more smooth as expected for higher grid
ensity. Thus, we expect the assumptions to be more valid for ge-
metry B than for geometries A and C and to better extend over
on-central trajectories I and III, as already discussed. In partic-
lar, note the prominent and approximately constant precipices
ear the inner and outer electrode surfaces. These correspond to
on-zero surface error constants �Ri mentioned in Assumption
2). The directions and magnitudes of these precipices indicate
n overall positive and roughly constant value of FEEr (or FEk)
s already noted.

.2. Relating trajectory errors FEr and FETOF to field
rrors Δk, with ω-dependence

Assumptions (1) and (2) then naturally lead to the corollary
xpressed in Eqs. (34) and (35) requiring that rsim(ω) andTsim(ω)
aintain the same theoretical form as rω and Tω (see Eqs. (6)
nd (7)) but with k replaced by ksim = k + �k. We may then
xpand both rω(k + �k) and Tω(k + �k) to first order in �k to
btain expressions for FETOF and FEr in terms of FEk according
o the theoretical model:
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Er(ω) = rω(k + �k) − rω(k)

rω(k)
≈ −2 FEk

× (1 − cos ω)

[2 − (1 − η) cos ω + (1 + η) cos(2 α + ω)]

(39)

ETOF(ω) = Tω(k + �k) − Tω(k)

Tπ(k)

≈ −2 FEk

[
1 + (1 + η)

∂ηI(η, α, ω)

2 I(η, α, ω)

]
(40)

oth Eqs. (39) and (40) depend on the parameter η rather than on
ach of r0 and K(r0), independently. Thus, since for all circular
rbits η = 0, both theoretical FEs are independent of r0 (and
(r0)) as expected from our discussion above. The integrals in
q. (40) can be analytically evaluated for circular orbits (η = 0,
= 0◦) in which case we have:

Er(ω) ≈ −2 FEk

(1 − cos ω)

2
(41)

ETOF(ω) ≈ −2 FEk

(ω − sin ω)

π
(42)

Note that the two FEs are closely related by a derivative, and
t the focal plane, ω = 180◦, we have this interesting equality:

Er(ω = π) ≈ FETOF(ω = π) ≈ −2 FEk (43)

lready observed in Figs. 3, 4, 8 and 9. We note that the negative
Er generally observed in Figs. 3 and 4 is therefore implied
y the positive FEk in the fairly broad region around the mean
adius shown in Fig. 10 (top).

We shall limit our investigation to nominally circular orbits
= 0 with α = 0, even though it is very likely that Eqs. (41)

nd (42) still apply for η �= 0. For α �= 0 we have already seen
hat the variation in the radial FEs is very small particularly at
he focal plane of interest here. Thus, it should be possible to
se our theoretical FEs for circular orbits to also predict the FEs
or non-circular orbits.

.3. Estimating field error FEk from modeling errors di

We now are left with the final task of determining a procedure
or evaluating the overall scaling parameter FEk required in Eqs.
41) and (42). We would ultimately like to do so directly from
he Simion electrode modeling errors di,j (i = 1, 2) mentioned
n Section 3. Using the definition of FEk Eq. (36) we have:

Ek = k(R1sim, R2sim) − k(R1, R2)

k(R1, R2)
(44)

(�R1
R2
R1

− �R2
R1
R2

)

�R
(45)

here Eq. (45) results if we replace Ri sim with Ri + �Ri and

eep only terms to first order in �Ri in the spirit of the first order
erturbation theory assumption expressed in Eq. (30).

We may define surface error di in grid units (gu) such that
i ≡ �Ri λ for i = 1, 2. Then using Eqs. (A.18) and (A.19),

t
fi
d
v
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xpressing Ri in terms of ρ for fixed R̄, and replacing Ri and
Ri in Eq. (45), we obtain a new ρ-dependent expression for
Ek:

Ek = −d1 + d2 χ(ρ)

−2 λ R̄ F (ρ)
(46)

ith F (ρ) and χ(ρ) defined as:

(ρ) ≡
(ρ

2

) (
2 − ρ

2 + ρ

)
(47)

(ρ) ≡
(

2 − ρ

2 + ρ

)2

(48)

s observed in Fig. 9, FEk is expected to scale inversely with
he product λ R̄.

For FEk to be independent of ω (see condition in Eq. (33)) d1
nd d2 must also be independent of ω, even though they depend
ocally on λ and ρ. As a first approximation we shall assume that
1 and d2 are just constant parameters that can be determined
mpirically by fitting or, as is the focus of the remainder of this
aper, predicted from the individual di,j values. The trajectory
Es according to Eq. (43) will then be given by:

Er(ω = π) = FETOF(ω = π) = −d1 + d2 χ(ρ)

λ R̄ F (ρ)
(49)

We note that the values of d1 and d2 can also be experimen-
ally“measured” in Simion as follows. We first solve for ksim
nd csim constants using the defining equations Eqs. (1) and (2):

sim = −Er sim(rsim)r2
sim (50)

sim = Ṽsim(rsim) + ksim/rsim (51)

here the actual Simion potential Vsim and field Er,sim are “mea-
ured” at radius rsim. Then using these values in Eq. (1) we can
btain values Ri sim and di for i = 1, 2:

i sim = 〈ksim〉/(〈csim〉 − Ṽi) (52)

i = (Ri,sim − Ri)λ (53)

inally, the ω-averaged values 〈Ri sim〉, 〈di〉 and 〈FEk〉 are com-
uted and listed in Table 5 (rows labeled Simion) for comparison
ith the model results. The entire procedure has been imple-
ented in our Perl script sc measure kc.pl.

.3.1. Quadrature error propagation model—FEk,quad

To impose some bounds on the FEs above, we might assume
o a rough approximation that the individual modeling errors di,j

ver the surface (Fig. 2 bottom) operate independently and can
e added in quadrature according to the propagation of errors
ormulation:

k =
√

(∂k/∂d1)2d2
1 + (∂k/∂d2)2d2

2 (54)

The di values here are taken as the standard deviations over

he surface of the individual di,j values in Fig. 2 (bottom). We
nd that for all geometries studied (both 2-D and 3-D), the in-
ividual di,j are in the range [−0.5, +0.5] gu with standard de-
iations di fairly consistent at 0.26 ± 0.1 gu (this is just under
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Table 5
Comparison of the FEs predicted by the various theoretical models to the FEs observed in Simion

Model Geometry λ (gu/mm) d1 (gu) d2 (gu) FEk (×10−4) FEr or FETOF (×10−4)

Simion A(2-D) 1 0.1112a −0.0954a 43.598a −84.3/ − 87.2a

quad A(2-D) 1 ±0.260 ±0.260 84.123 −168.25
ef A(2-D) 1 0.13203 ± 0.00628 −0.17890 ± 0.01525 57.797 −115.59
nw A(2-D) 1 0.00168 0.001804 0.34859 −0.69717
sw A(2-D) 1 0.1077 −0.0961 42.438 −84.876
cw A(2-D) 1 0.1039 −0.0946 41.102 −82.205

Simion B(2-D) 10 0.1542a −0.1413a 6.1130a −12.1/ − 12.1a

quad B(2-D) 10 ±0.260 ±0.260 8.4123 −16.825
ef B(2-D) 10 0.13203 ± 0.00628 −0.17890 ± 0.01525 5.7797 −11.559
nw B(2-D) 10 0.0619 −0.0459 2.3519 −4.7048
sw B(2-D) 10 0.1570 −0.1425 6.2079 −12.416
cw B(2-D) 10 0.1539 −0.1396 6.0852 −12.170

Simion 2-D 100 0.0907ab −0.1000ab 0.3753ab −0.7569/ − 0.7078ab

quad 2-D 100 ±0.260 ±0.260 0.84123 −1.6825
ef 2-D 100 0.13203 ± 0.00628 −0.17890 ± 0.01525 0.57797 −1.1559
nw 2-D 100 0.0493 −0.0441 0.19420 −0.38840
sw 2-D 100 0.1440 −0.1399 0.57791 −1.1558
cw 2-D 100 0.1412 −0.1369 0.56649 −1.1330

Simion C(3-D) 1 0.1617a −0.1551a 65.055a −126.8/ − 125.6a

quad C(3-D) 1 ±0.260 ±0.260 84.123 −168.25
ef C(3-D) 1 0.19552 ± 0.00490 −0.04213 ± 0.01190 64.478 −128.96
nw C(3-D) 1 0.0765 −0.0768 30.935 −61.870
sw C(3-D) 1 0.1892 −0.1918 76.701 −153.40
cw C(3-D) 1 0.1973 −0.1953 79.531 −159.06

Simion 3-D 4 0.1716ab −0.1584ab 17.05ab −33.76/ − 33.43ab

quad 3-D 4 ±0.260 ±0.260 21.031 −42.06
ef 3-D 4 0.1955 −0.0421 16.120 −32.239
nw 3-D 4 0.0817 −0.0777 8.1600 −16.320
sw 3-D 4 0.1961 −0.1919 19.714 −39.428
cw 3-D 4 0.2013 −0.1957 20.207 −40.414

Prediction for ρ = 0.25, R̄ = 50 mm (R1 = 43.75 mm, R2 = 56.25 mm), λ = 5 in a 2-D geometry
Simion 2-D 5 0.1613a −0.1445a 51.441a −104.14/ − 100.88a

quad 2-D 5 ±0.260 ±0.260 62.511 −125.02
ef 2-D 5 0.13203 ± 0.00628 −0.17890 ± 0.01525 49.422 −98.843
nw 2-D 5 0.0737 −0.0573 22.292 −44.585
sw 2-D 5 0.1689 −0.1516 53.620 −107.24
cw 2-D 5 0.1675 −0.1489 52.993 −105.99

The theoretical models (quad, quadrature; ef, empirical fit; nw, non-weighting; sw, simple weighting; cw, complex weighting) are described in Section 6. FEk , d1,
and d2 are obtained from the models and compared to corresponding values obtained from measuring the Simion average field along r (FEEr and FEV and Eqs. (38)
and (53)). Values of FEr and FETOF “experimentally” determined from Simion trajectories and compared to corresponding values predicted from the model using
FEr ≈ FETOF ≈ −2 FEk (Eq. (43)). Simion results were determined only for the central orbit r = r0 = R̄ = 101.6 mm, with trajectory FEs obtained at ω = π. SC
uses R1 = 72.4 mm and R2 = 130.8 mm (R̄ = 101.6 mm, ρ = 0.574803), but the last example examines the special case of ρ = 0.25, R̄ = 50 mm λ = 5 in a 2-D
geometry. The limiting case with λ = 100 gu/mm is also given for the 2-D geometry as a special application. The values of d , FE and FE in the various models
c
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an be readily calculated at our special web site model calculator [35].
a “Experimentally” determined values.
b Used Simion 8 with 2GB RAM.

0.29, which is the standard deviation expected if the numbers
n this range [−0.5, +0.5] gu were uniformly random).

Using the expression for k given by Eq. (5) and evaluating
he partial derivatives then leads to the result

Ek,quad =
√

d2
1 + d2

2 χ(ρ)2

2 λ R̄ F (ρ)
(55)
hich of course is by definition positive and therefore cannot
redict the sign of the error. The value ±FEk,quad, thus estab-
ishes a rough (and likely non-minimal) bounds estimate on FEk.
t may similarly be substituted into the other FE formulas.

b
t
l
2

i k r

Simion FEs for a sampling of geometries are listed in Table
and are seen to be within the predicted estimated bounds of

Ek,quad. In Fig. 11 these FEs are plotted over ω.

.3.2. Empirical fit model—FEk,ef

Having suggested that d1 and d2 are likely within the range
0.26 gu, we now empirically obtain more precise values for

hem. This is done by fitting to our FEr(ω = π) data scaled in

oth the x- and y-axis by the functions χ(ρ) and F (ρ), respec-
ively, as shown in Fig. 12. With the above definitions a simple
inear fitting of the di constants is possible. The spread in the
-D data at each ρ value (bottom) is due to the various values of
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Fig. 11. (Color on line) Comparison of theoretical models cw, ef and quad based on Eq
orbits I (r0 = 81.6 mm), II (r0 = 101.6 mm) and III (r0 = 121.6 mm) as a function of
cw model with orbit II in geometries A and B. Theoretical models are not r0-depende

λ at which these were obtained. For 3-D geometries only λ = 1
data were obtained since much larger values (λ > 2) would lead
to Simion PAs with prohibitively large memory requirements
(see Table 3).

The two-parameter fit clearly does a reasonable job overall.
Both d1 and d2 are within the 0 ± 0.26 gu in agreement with pre-

Fig. 12. (Color on line) Least-square-fit of two-parameter empirical fit model
(ef) (see Eq. (49)) to the rescaled data for FEr(ω = π) shown in Fig. 9 for both
2-D geometries (bottom) and 3-D geometry C (top). The resulting effective
thicknesses di are given in the legends with their fitting errors.
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s. (41) and (42) with the radial (top row) and TOF (bottom row) FEs of circular
ω for geometries A (left), B (middle) and C (right). Best agreement is seen for
nt.

ious expectations. d1 is seen to be positive and d2 to be negative
howing that the two surfaces effectively extend outward into
pace by a small fraction of a grid unit: R1sim = R1 + d1/λ mm,
2sim = R2 + d2/λ mm, with d1 and d2 given in grid units in

he legend of Fig. 12. This is consistent with the observations in
ection 5.1.1.

.3.3. Simple average model—FEk,nw

To explain the empirical values of di computed above from
he modeling errors di,j in Fig. 2 (bottom), one might readily
ttempt to compute the mean values of the di,j and substitute
hose means for the di constants in Eq. (46):

Ek,nw = −〈d1,j〉 + 〈d2,j〉 χ(ρ)

−2 λ R̄ F (ρ)
(56)

The “nw” stands for “non-weighted” and is meant to distin-
uish it from the “weighted” mean used later. 2-D results are
veraged over the circumference of a circle (in the XY plane),
hile 3-D results are averaged over the surface of a sphere.
Results are shown in Table 5 as before. Typically, the 3-D

verages are larger (and less variant) due to extra contributions

rom non-XY plane values. Most importantly, the errors com-
uted here are a fraction of the errors in the Simion data. Obvi-
usly, there must be a more important factor contributing to the
rror.
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Fig. 13. (Color on line) Point type classification used in the complex weighted
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.3.4. Weighted average models—FEk,sw and FEk,cw

Instead of taking the simple average of the modeling errors
i,j , as done previously, a much better estimate of surface er-
or is obtained by using a weighted average of these values,
ith weights defined by point topology. Qualitatively, the sur-

ace points that are sharpest on the exterior or are on sections
hat are longest should have higher weights as they contribute

ost to the field (think of the SC spheres being replaced with
piked spheres).

Thus, assigning to each grid point j and point type tj a cor-
esponding weight W(tj), the weighted average leads to the ex-
ression:

Ek,w = −〈d1,j〉W + 〈d2,j〉W χ(ρ)

−2 λ R̄ F (ρ)
(57)

ith the weighted averages defined as:

di,j〉W =
∑N

j=1 di,jWs(tj)∑N
j=1 Ws(tj)

(i = 1, 2) (58)

Our topological classification of surface points for the 2-D
ase is shown in Fig. 13. Points are classified by the number
f adjacent orthogonal and diagonal non-electrode points. The
ptimal weights used on the average can be found empirically
y fitting them to SIMION data, either to SC systems or even to
ore basic parallel plate systems as done here. The following
eights were used: Type 1: 1, type 2: 1, type 3: 1.57, type 4:
.78. We note that types 1 and 2 are about identical, while type
is the sharpest, so as expected it has the highest weight. Type
actually is not sharp at all; A straight 45◦ line contains all

ype 3 points and the field near it can be observed to be very
ccurate. The reason for the 1.57 weight probably has to do with
he fact that the length of a type 3 point roughly corresponds
o the length of the diagonal in a 1 × 1 square, which is

√
2,

ompared to length 1 for types 1 and 2. A similar analysis has
lso been carried out in 3-D, but involves a much more complex
lassification of points [34], beyond the scope of the present
rticle.

We have found that this point classification scheme can be
uch simplified (especially in 3-D) while still producing good

esults for the SC. Points may be classified solely by orthog-
nal surface count: points with surface count 1 are weighted
y 1, while points with a greater-than-one surface count are
eighted by 3 (for 2-D geometries) or 5 (for 3-D geometries).
his weighted average is crude, but useful. The two versions of

he weighted average model are referred to as complex weight-
ng (cw) and simple weighting (sw), respectively – FEk,cw and
Eksw .
Results are shown in Table 5 and for model cw in Fig. 11
s before. Predictions of FEr and FETOF using the FEk,cw and
Eksw values are shown to be in excellent agreement to the 2-D
imion data at r0 = R̄. The model does over predict the 3-D
ata slightly because no attempt was made to take into account
hich plane the particles fly in (trajectories at an angle of 45◦
ff the XY plane are found to have a bit higher FEs).

λ

t
m
i
g
v

oint type 0 is an internal point and has zero contribution. Equipotentials are
hown in green.

.3.5. Discussion
Using the formulas developed here we can predict the tra-

ectory (radius and TOF) FEs at ω = π for any HDA. Such
n example is listed in Table 5 for an HDA using a 2-D elec-
rode geometry with a grid density λ = 5 gu/mm, a mean radius
¯ = 50 mm and ρ = 0.25. The three types of theoretical mod-
ls (quadrature, empirical fit, and weighted average) are seen to
ive fairly good agreement with the measured Simion results.

Estimation of the trajectory FE not only provides a measure of
he error, but also the possibility to compensate for it. We found
n general that for spherical surfaces a correction of d1 ≈ −d2 ≈
.1–0.2 gu in the radii is warranted electrostatically in Simion
ersion 7. For example, if in geometry A for r0 = 101.6 mm we
nstead use R1 = 72.4 − 0.1 = 72.3 gu and R2 = 130.8 − 1 +
.1 = 129.9 gu in the Simion geometry file, we obtain a Simion
Er = 12.4 × 10−4, which is much smaller in magnitude than

he FEr = −84.3 × 10−4 obtained using the nominal values of
1 = 72.4 mm and R2 = 130.8 mm (see Table 5), in agreement
ith our analysis.
Also, by having a model for the error as a function of λ (e.g.

E ∝ 1/λ), we might simulate the system at various low values
f λ and extrapolate those results to λ = ∞ (near perfect accu-
acy) [2]. The 2-D case with ρ = 0.574803 and λ = 100 gu/mm
nd 3-D case with λ = 4 represent a special application of the
ew Simion version 8 with its expanded capabilities to han-
le much larger size PAs (in this case just under 2GB RAM).
ood agreement with measurements is also seen for this case
hich approaches the limiting zero-modeling-error situation of
→ ∞.
The quadrature and empirical models presented here are easy

o understand and use. The weighted average models are much

ore complicated and generally require a program to compute

t, but they are potentially more accurate and could have more
eneral application as a theoretical tool. We have provided online
ersions of these calculators on the world wide web [35].
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Table 6
Summary of radial and time-of-flight (TOF) fractional errors (FE) evaluated for trajectories following deflection through ω = 180◦ in the spherical capacitor (SC)
described in Table 1

A (2-D)a B (2-D)a C (3-D)a

1b 10b 1b

Trajectories (α = 0◦) (−82.205 × 10−4) (−12.170 × 10−4) (−159.06 × 10−4)
Radius: Orbit r0(mm) rπ exact (mm) FEr π = (rπ sim − rπ exact)/rπ exact (×10−4)

I 81.6 81.6 −50.2 −10.2 −36.4
II 101.6 101.6 −84.3 ± 8 −12.7 ± 0.2 −127.0 ± 2
III 121.6 121.6 −95.6 −13.7 −134.1

TOF: Orbit r0(mm) TOFπ exact (ns) FETOF π = (TOFπ sim − TOFπ exact)/TOFπ exact (×10−4)

I 81.6 12.2493 −49.8 −10.3 −43.1
II 101.6 17.0183 −83.4 ± 15 −8.5 ± 0.6 −125.5 ± 5
III 121.6 22.2831 −93.8 −12.9 −122.6

Line shapes (|α| ≤ 2◦)

Peak position: r0(mm) Peakexact (mm) FEpeak = (peaksim − peakexact)/peakexact (×10−4)

81.6 81.6 −50.2 −11.0 −33.1
101.6 101.6 −85.6 −14.8 −127.0
121.6 121.6 −96.2 −15.6 −130.8

Base width: r0(mm) bwexact (mm) FEbw = (bwsim − bwexact)/bwexact (×10−4)

81.6 0.199 126 1 859
101.6 0.248 202 −20 40
121.6 0.296 169 −17 567

Details of the circular orbits I, II, III and Simion SC electrode geometry constructions A, B and C are given in Tables 2 and 3, respectively. The launching radius
r0 and angle α are listed. Typical FE uncertainties (±) due to trajectory starting point dependence (ω0—see Fig. 5) are only shown for FEr π and FETOF π of orbit
II. The peak positions and base widths of the Monte-Carlo generated line shapes (see Section 5.2.2) are used to determine the corresponding fractional errors. FEbw

is indicative of the relative FE error. Radial fractional errors determined from either the line shapes or the circular orbits are seen to be practically identical. Model
predictions are found to be independent of the launching radius r0 and give equal FEs for radius and TOF at ω = 180◦. Model results are listed in Table 5. The results
o enthe
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f our “best” model (the cw-model) are given on the first line of the table in par
a Geometry.
b λ (gu/mm) .

. Summary and conclusions

We have investigated the accuracy of the finite difference
ethod (FDM) approach to charged particle optics simulation

s exemplified by the popular package Simion for the case of
epler orbits in the field of a spherical capacitor. Our primary
oal was to characterize, quantify and model inaccuracies in the
imulated electron trajectory orbit radius and time-of-flight as
function of orbit radius and angle for different geometrical

DM simulations of the SC electrodes. In particular, we were
nterested in establishing a quantitative connection between the
bserved trajectory inaccuracies and the surface coarseness in-
erent in the modeling of the SC electrodes by the fixed-grid-
ized finite difference approach.

We used rather large SCs, having a mean radius R̄ =
01.6 mm, typical of modern hemispherical deflector analyz-
rs. The SC mean radius was kept fixed throughout the entire
nvestigation so that the central principal ray with pass energy

= 1000 eV always described the same circular trajectory. The
nterradial SC electrode spacing ρ and Simion potential array
rid unit density λ were also varied under both 2-D and 3-D
imion representations over a wide range with ρ = 0.18–0.97
nd λ = 1–10 gu/mm. Simion results for the potential, electric

eld, trajectory radius and TOF were evaluated over three spe-
ific circular electron radii r0 = 81.6, 101.6(= R̄), 121.6 mm
nd compared to exact analytic results in the form of fractional
rrors presented as functions of the orbit angle ω = 0–360◦.

a

e
f

sis for comparison.

Results at ω = 180◦ corresponding to the first-order focusing
lane of an HDA were examined and summarized in numerical
orm in Table 6, while Figs. 3–6, and 8 give more detailed infor-
ation over the entire ω range. FEs are seen to be comparable in

alue to the ones reported by D. Dahl [3] for a cylindrical mir-
or analyzer. The Monte-Carlo generation of line shapes at the
rst-order focus plane (ω = 180◦), was found to be a compre-
ensive way to test both absolute and relative radial accuracy as
hown in Fig. 7. Overall, the generated line shapes were also in
air agreement with theory, even though shifted in the absolute
adial exit position.

The inaccuracies due to the electric field interpolation and
he Runge-Kutta trajectory integration (discussed in Appendix
) were found to be minor compared to the error induced by the
nite difference modeling of the curved surfaces by squares or
ubes. Comparison of these FEs showed that increasing the grid
ensity λ by a factor of 10 improves the accuracy of the potential,
adial electric field, trajectory radius and TOF simulations by
oughly the same amount, while the accuracy of kinetic energy
rror was improved by about three orders of magnitude. 2-D
eometries with the highest grid density for trajectories furthest
rom the electrodes gave the best results. The sensitivity to the
aunching point starting orbit angle position was also evaluated

nd found to affect the error by 5–15%.

Finally, these results were generalized using theoretical mod-
ls that predict the Simion trajectory FEs in the radius and TOF
or any HDA. These models are based on the observations that
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he trajectory FEs are mainly due to the small, but significant,
lectrode surface modeling “errors” �Ri with (i = 1, 2). The
odels explain the electric field perturbation as a small overall

onstant change �k (or FEk) in the ideal −k/r2 electric field
onstant k. This perturbation in the field then results in the tra-
ectory radius and TOF FEs, which are found to be proportional
o FEk. The models predict trajectory FEs that are approximately
ndependent of the launching radius r0 and angle ω, in fair over-
ll agreement with the corresponding Simion FEs for all tested
eometries and orbits. Three types of models for predicting FEk

rom the individual electrode errors �Ri were investigated and
ound to be successful to various degree of accuracy. All our
odels correctly predicted the dependence of the radial and TOF
Es on the grid density λ and the interradial electrode spacing ρ

or the central ray at ω = 180◦ and showed the radius and TOF
Es to be equal at this particular orbit angle in agreement with
ur simulation results. It was also found that the main source of
rror can be partly compensated for by removing approximately
.1–0.2 gu from each spherical surface in the model.

In conclusion, this investigation provides some further
nsights into the accuracy of field and trajectory calculations
nd the factors affecting them in the simulation of the spherical
lectrodes by the finite difference approach and establishes the
quations relating the observed fractional errors to the model-
ng parameters. Our methodology and semi-empirical results
hould provide useful guidelines for evaluating the accuracy
f Simion in HDA applications and hopefully encourage more
uch practical benchmark tests, analysis and intercomparisons
f existing charged particle optics programs and approaches.
he extent to which these results can also be applied to realistic
DA applications with strong fringing fields remains to be seen.
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nterest in this project. This work was supported by the Greek-
ungarian S&T cooperation GR-11/03 and a travel grant by the
niversity of Crete.

ppendix A. Trajectory equations—connection between
C and HDA

In the main text we presented the trajectory equations in all
enerality, but limited our SC investigation to the conventional
nbiased HDA case where Ṽ0 ≡ Ṽ (R0) = 0. Here, we shall ob-
ain the basic trajectory parameters for all HDAs [16].

The voltages Ṽ1 and Ṽ2 determine the precise trajectory and

re set by “tuning” the SC to the principal ray. In general, the
rincipal ray for any HDA follows an ellipse entering with α = 0
nd radius R0 and exiting after deflection by 180◦ with radius
π. Both R0 and Rπ must be externally specified as well as the

q

s

Mass Spectrometry 261 (2007) 115–133

otential Ṽ0. In general,R0 �= Rπ and Ṽ0 �= 0 [16]. For a conven-
ional HDA R0 = Rπ = R̄ and Ṽ0 = 0 and the orbit is a circle.
or the general HDA these conditions lead to the following two
quations:

R0

Rπ

= 2a0

(2a0 − R0)
− 1 (A.1)

˜0 = − k

R0
+ c (A.2)

ith a0, the semi-major axis of the principal ray. Defining the
seful shorthand

≡ Rπ

R0
(A.3)

e then have

0 = (R0 + Rπ)

2
= R0 (ξ + 1)

2
(A.4)

qs. (A.1) and (A.2) can be solved for k and c utilizing Eqs.
A.4) and (A.3) to obtain:

k = K0 R0
(ξ + 1)

ξ
(A.5)

c = q Ṽ0 + K0
(ξ + 1)

ξ
(A.6)

pon substitution of k and c into Eq. (1) we obtain for Ṽi:

Ṽi = K0

[
(ξ + 1)

ξ

(
1 − R0

Ri

)]
+ q Ṽ0 (i = 1, 2) (A.7)

rom the particle’s nominal pass energy t given by [16]:

= E + q c = K(r0) + q Ṽ (r0) (A.8)

e obtain for t = w the principal ray tuning energy w:

= E0 + q c = K0 + q Ṽ0 (A.9)

ere we also define γ , the user supplied biasing parameter [16],
pecifying the desired potential at the principal ray starting ra-
ius R0, Ṽ0 = V (R0):

Ṽ0 ≡ (1 − γ) w (A.10)

or a conventional HDA with Ṽ0 = 0, γ = 1. Defining the re-
uced HDA pass energy τ ≡ t/w, we may rewrite all trajectory
arameters in terms of γ, ξ, w, τ referenced to the principal ray
16]. Using the shorthand κ ≡ γ/ξ we have:

c = w (1 + κ) (A.11)

k = w R0 (1 + ξ) κ (A.12)

= 1

2
R0 (ξ + 1)

[
κ

κ + 1 − τ

]
(A.13)

= −w (1 − τ + κ) (A.14)

(r0) = w

{
τ − 1 + κ

[
R0

r0
(1 + ξ) − 1

]}
(A.15)
Ṽ (r0) = w

[
κ + 1 − κ (1 + ξ)

R0

r0

]
(A.16)

ince E0 < 0 for bound motion, we must always have γ > 0.
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The voltages are then given by:

Ṽi = w

{
1 − κ

[
R0 (1 + ξ)

Ri

− 1

]}
(i = 1, 2) (A.17)

f we write the two radii R1 and R2 in terms of the mean radius
¯ and the interradial electrode spacing ρ = �R/R̄, useful in
-dependence studies (see Sections 5.4 and 6), we have:

1 = R̄ (1 − ρ/2) (A.18)

2 = R̄ (1 + ρ/2) (A.19)

Ṽ1 = w

[
κ + 1 − 2 κ (1 + ξ)

(2 − ρ)

(
R0

R̄

)]
(A.20)

Ṽ2 = w

[
κ + 1 − 2 κ (1 + ξ)

(2 + ρ)

(
R0

R̄

)]
(A.21)

�Ṽ = 4 w κ (1 + ξ) ρ

(4 − ρ2)

(
R0

R̄

)
(A.22)

We note that the kinetic energy used in Simion for “flying” a
article with nominal pass energy t is K(r0) given by Eq. (A.15).
hen Ṽ (r0) = 0, K(r0) is indeed equal to t (see Eq. (A.8));

owever, for Ṽ (r0) �= 0, K(r0) is in general different from t.
his has to do with the convention that kinetic energy is always
efined with respect to ground, i.e. zero potential.

In HDAs, there is an extra voltage Vp corresponding to the
late voltage used with pre-retardation. The HDA voltages Vi

re then related to the SC voltages Ṽi by the simple formula:

i = Ṽi + Vp (i = 1, 2) (A.23)

he derivation of the HDA trajectories and voltages has been
resented in detail in ref. [16]. The above treatment of the SC
rajectories and voltages connects the two in a consistent way
ncluding the case of the biased paracentric HDA [9,16].

ppendix B. Simion details

.1. Geometry (.gem) files

The three geometries A, B and C used to represent the SC
lectrodes with R1 = 72.4 mm and R2 = 130.8 mm at voltages
1 = 806.6298 V and V2 = −446.4832 V were constructed us-

ng the following Simion geometry files [35]:

Geometry A (2-D, λ = 1 gu/mm)

pa define(150,150,1,cylindrical,xy)
e(-446.4832){fill{notin{circle(0,0,129
e(806.6298){fill{within{circle(0,0,72.

Geometry B (2-D, λ = 10 gu/mm)

pa define(1500,1500,1,cylindrical,xy)
e(-446.4832){fill{notin{circle(0,0,130
e(806.6298){fill{within{circle(0,0,724
Geometry C (3-D, λ = 1 gu/mm)

pa define(150,150,150,planar,xyz)
e(-446.4832){fill{notin{sphere(0,0,0,129.
e(806.6298){fill{within{sphere(0,0,0,72.4
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}}};OUTER ELECTRODE R2=130.8 mm
}};INNER ELECTRODE R1=72.4 mm

}};OUTER ELECTRODE R2=130.8 mm
};INNER ELECTRODE R1=72.4 mm

Note that we have used radius R2g = 129.8 gu in geome-
ry A and C and R2g = 1307 gu in geometry B. These are 1 gu
maller than the theoretical values of R2, 130.8 and 1308 gu,
espectively. This correction is an artifact of the behavior of the
otin instruction, and the need for it can be seen by measuring
he geometry as done in Fig. 2 (bottom). The effect of erro-
eously including the additional grid unit results in R2g shifted
utward by 1 gu, which does not much affect the magnitude of
he FEs but does change their signs, demonstrating the sensitiv-
ty to just 1 gu change. In the case of the line shapes, it affects
osition but imposes negligible differences in the overall shape
tself.

.2. Simulation conditions

All Simion PAs were refined with a convergence objective
f 1 × 10−7 with all other refining parameters left at default.
ll trajectories were computed with the default value of the tra-

ectory quality control (tqc) parameter (e.g. tqc = +3). Smaller
ime steps using tqc = 302 had no effect on the trajectories. Par-
icles were flown in the XY-plane launched at x0 = r0, y0 = 0
nd azimuthal angle Azm = 0◦, elevation angle El = 0◦ and ve-
ocity elevation angle Elv = −90◦ with ω increasing from 0 in
he clockwise direction. Finally, to avoid relativistic effects not
ncluded in our theoretical treatment, a heavy electron mass m
as used with m = 1012 me. The heavier mass only slows down

he particle and thus the appropriate correction factor of 10−6

as included in FETOF (Eq. (23)).

.3. FEs in the XY plane with Er-field set exactly from
heory

Using Simion programming capabilities (.prg files), the ra-
ial electric field could be set to the exact theoretical values, thus
ypassing errors introduced by electrode inaccuracies, numeri-
al errors in solving the Laplace equation, and errors produced
y interpolating and computing the gradient potential to obtain
he electric field. Thus, any non-zero FEs in the trajectory strictly
eflect just the Runge-Kutta trajectory integration accuracy. Ex-
remely small FEs were found on the 10−7 level or smaller for
ll variables, clearly demonstrating that trajectory integration
rrors are indeed negligible. These are not shown due to space
imitations.
8)}}};OUTER ELECTRODE R2=130.8 mm
)}}};INNER ELECTRODE R1=72.4 mm
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Table B.1
Comparison of FE values in different planes of motion (Z = 0 or X = 0) or when using exact theoretical fields in Simion

Procedure Geometry Plane of
motion

r0 = 81.6 mm r0 = 101.6 mm r0 = 121.6 mm

FEr (×10−4) FETOF (×10−4) FEr (×10−4) FETOF (×10−4) FEr (×10−4) FETOF (×10−4)

Exact �E-field (.prg) ABC Z = 0 0.00123 0.0538 0.000984 0.0536 0.000 0.0536
Exact �E-field (.prg) ABC X = 0 0.00123 0.0538 0.000984 0.0536 0.000 0.0536

Exact Ṽ (r) (Perl PA) A Z = 0 −0.6863 −0.794 −0.492 −0.457 −0.329 −0.309
Exact Ṽ (r) (Perl PA) B Z = 0 −0.0123 0.0228 0.000 0.0718 0.000 0.0495
Exact Ṽ (r) (Perl PA) C Z = 0 −0.686 −0.712 −0.492 −0.457 −0.329 −0.309

Ṽ1, Ṽ2 refine A Z = 0 −50.25 −49.78 −84.25 −87.13 −95.56 −93.79
Ṽ1, Ṽ2 refine B Z = 0 −10.25 −10.26 −12.11 −12.09 −13.65 −12.92
Ṽ1, Ṽ2 refine C Z = 0 −36.45 −43.08 −126.97 −125.5 −134.1 −122.6

Ṽ1, Ṽ2 refine A X = 0 251.7 277.4 13.58 13.82 198.4 186.0
Ṽ1, Ṽ2 refine B X = 0 −4.616 −4.564 −7.330 −7.280 0.1234 0.1765
Ṽ1, Ṽ2 refine C X = 0 – –

FEs are measured at ω = π for orbits with r0 = 81.6 mm, r0 = 101.6 mm and r0 = 1
m = me × 1012, R1 = 72.4 mm, R2 = 130.8 mm have been used in all calculations.

B.4. FEs in the XY plane with Ṽ (r) set exactly from theory

Using external software programming, all cells in Simion
potential arrays can be modified directly. Perl script
sc make theoretical pa.pl were used to set the PA po-

Fig. B.1. (Color on line) Same as Fig. 3 for geometry A (top) and B (bottom), but
with the exact theoretical potential inserted into the Simion potential arrays (via
software) rather than setting the voltage on the electrodes and then solving the
Laplace equation (Simion refining). The electrodes in this case have no effect.
For geometry C (not shown) FEs are found to be identical to those of A with
only the kinetic energy FE being slightly larger.
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−126.8 −125.6 – –

21.6 mm in geometries A, B and C. The values of k = −203200, c = −2000,

entials to the exact theoretical values, thus eliminating electrode
odeling errors in the potential except for interpolation errors

nd errors in computing the electric field from the potential using
q. (3). In Fig. B.1, we show the resulting FEs to be of the order
f 1 × 10−4 (A and C) or 3 × 10−6 (B), which are roughly 100
imes smaller than the FEs already shown in Figs. 3 and 4. Some
pecial simulation techniques could take advantage of this fact.

.5. FEs for motion in the YZ (X = 0) plane

One might argue that the FE results presented in the main
ext are somewhat contrived and almost worst-case. As already
iscussed by Dahl [3] by taking advantage of the special symme-
ries of the problem and using integrally aligned boundaries one
an always strive to minimize, or possibly eliminate, the errors
n the model. In the case of the 2-D representations of the SC in
imion, the axis of symmetry is the x-axis, so Ri sim values will
e constant in the YZ (X = 0) plane and no ω dependence will
e observed in the fields. Furthermore, those Ri sim may be inte-
rally aligned, giving ideally sized electrodes in theX = 0 plane.
or λ = 1 (A), we have integer round-off giving R1 sim = 72 gu
nd R2 sim = 131 gu, introducing a constant error in the X = 0
lane, but for λ = 10 (B), we can have R1 sim = 724 gu and
2 sim = 1308 gu and integrally aligned boundaries are indeed
ossible. Motion in the X = 0 plane is investigated in Table B.1.
n the X = 0 plane, FEs are indeed worse in the outer orbits of

and much better in the outer orbits of B (integrally aligned),
ut B is only marginally better in the central orbit. This limited
mprovement in the central orbit of B is explainable since even
hough there are no electrode errors in the X = 0 plane, there are
navoidable electrode errors just off the X = 0 plane, which do
ffect the potentials in the X = 0 plane. That error was avoided
n a cylindrical capacitor used by Dahl. [3].
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