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1. INTRODUCTION

The numerical methods for the analysis of electric and magnetic fields have
been an area of continuous interest in the last decades. With the advent of high
speed computers, a variety of efficient techniques have been developed that
allow us to obtain the solution of almost any desired electromagnetic field

configuration.
For the electrostatic case, the problem is reduced to getting the solution
of the Poisson equation V3¢ = — p/e over a region R, subject to boundary

conditions, usually of Dirichlet type. General approaches to the numerical
solution of this equation are finite difference schemes, with or without vari-
ational formulations and integral equation methods. Any of these approxi-
mate methods can convert the differential equation into a linear algebraic

* Portions of this article and Figs. 14, 15, and 16 appear in a previous article by the authors
(Reference 28), published and copyrighted by Elsevier Science Publishers (Physical Sciences &
Engineering Div.), and are reproduced with their permission.
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system. Relaxation techniques and random walk simulations have frequently
been used to solve the algebraic equations, but nowadays the easy access to
efficient matrix inversion algorithms incorporated in subroutine libraries
makes direct methods preferable. Relative merits of the different approaches
have been the subject of extensive discussion (Steele, 1987). In general, the
election of the most convenient method for solving a potential problem is
very much dependent on the following factors:

1) Facilities of computing memory size and time available. Difference
methods, which use a mesh defined over the volume, are much more memory
and time consuming than integral equations, which set node points only over
the domain surface.

i1) Theshape and symmetry of the region of interest. Curved contours do
not fit well to mesh points defined in finite difference schemes. If the problem
has rotational or translational symmetry, a two-dimensional formulation 1S
possible and requires a simpler treatment. Another aspect to consider is if the
field problem domain extends in all directions to infinity, i.e., if we have an
exterior problem. In that case an integral formulation that considers only
points around the boundary is better suited.

1) Medium linearity and uniformity. Difference formulae can be used
even when nonlinear and nonuniform media are present. Integral equations
are only valid for linear media but can be applied to the frequent case of
boundaries over which the permittivity varies discontinuously.

The integral formulation gives directly charge densities induced on the
conductor surfaces or the potential and electric field at any desired point.
Therefore, it has been frequently used for the calculation of capacitance
coefficients of a set of conductors or the computation of trajectories in the
electrostatic focusing of ion beams, with or without space charge effects
(Renau et al., 1982; Martinez and Sancho, 1983a; Munro, 1987).

[I. INTEGRAL EQUATIONS FOR CONDUCTORS AND DIELECTRICS

In order to derive the integral equations for electrostatic problems, it is
convenient to start with an analysis of the discontinuities occurring in the
Integrals associated with the potentials produced by single or double layers of
charge. These integrals are of the form

I(r)= | o(r') 1 —ds’ (1)
Js r —r’|
Js on \|r —r’'|
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The integral I(r) 1s a continuous function, but its normal derivative ap-
proaches different limits from each side of the surface. These limits are

(Kellogg, 1967)
(8") —-(?) ~ 2n0(r) 3)
on/, \on),

(@I) (ﬂ) + 2na(r), (4)
on)_ onj/,
where n 1s the outwardly directed normal at r, (61/0n),, (81 /6n)_ are the limits
of the integral from the outer and inner side, and (61/dn), is the integral at the
surface (taken as its Cauchy’s principal value).

Similarly, the potential produced by a double layer J(r) is discontinuous,
the limits from either side being related to the value J, at the surface by the

equations

|

Jy = Jy + 2n1(r) (5)
J_ =J, — 2nt(r). (6)
Now, we will deduce an integral equation for the electrostatic potential in a

geometry including conducting and dielectric media. First of all, if we have a
set of charged conductors, the potential that they produce is

b(r) = — j o)y 7)

N 4re, se [T — 1|

where o(r’) is the charge density and S. represents the surface of all the
conductors.

When Eq. (7) particularizes to points lying on the surface of any conductor
where the potential is constant and known, it constitutes a Fredholm integral
equation of first class. Its solution gives o(r’) and then the potential at any
point, using Eq. (7) again.

We consider now a system of conducting and homogeneous dielectric
bodies, as shown in Fig. 1. We will treat the dielectric interfaces as transitions
from one dielectric body with permittivity ¢; to the vacuum and then to
another dielectric with ¢; or to a conductor and assume that the transition
layer is vanishingly thin.

The potential at any point inside a dielectric volume is produced by all
sources present in the space. In our case these are basically surface charges on
the conductors with density o(r’) and dipole distributions over the polarized
dielectrics, described by the polarization vector P(r’). In addition, other
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F1G. 1. Schematic drawing of a set of conducting and dielectric bodies.

possible sources, such as space charges with volume density p(r’), can be
considered. Then we have

1 p(r’) 1 f a(r’)
- dv’ ds
PO = 4. |, R 4ney |s. R

g P( ’)V’(l)dﬂ’ (8)
LI T — ,
+ J=1 4?18.[} Vr R

where R = |r — r'|, V, represents the volume of the dielectric J, V is the total
volume, and S¢ 1s the surtace of all conductors. If we express P(r’) = g5k — 1)

E(r’), Eq. (8) becomes

L [ o) L [ o)
= dv’ + —— ——ds
d)(r) 4?[8,3 J;r R v + 4?1'8{} Sc R
1 1) ,
S— —1 Vo)V |—|dv'. (9)
= ik, JL o(r') (R

Using partial integration and replacing the integrals of the divergence by
surface integrals, we obtain

é(r) : '[ @dv’ _|_L E(r’)ds’

=4:rzﬂﬂ R dreg Js. R

] norf ] ; 2 _!_ N Ay
= J(kj— 1)(L]r qb(r)?(l—i)ds —_LJV (R)fﬁ’(l‘)db). (10)
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With the substitution V*(1/R) = —4nd(r — r'), and if the point r belongs
to the dielectric volume V;, Eq. (10) becomes

R J s |, “as

- dregk; dregk,

! a1\
4ﬁkf;(kJ_])LJ¢(r)@n’ (R)ds, reVv,. (11)

To obtain an integral equation we apply this expression to a point very
close to the surface S;, an interface between the dielectrics I and L. Because of
the continuity of the potential, and using Egs. (5) and (6) to write the terms
corresponding to this interface as integrals from the surface, we get

1 a(r’)
2neg(ky + kp) se R

7.

P(r) ds’

= : (r) dv’ +
B 2meg(k; + kp) Jy R

| o (1),
iy 1 3], 4005 (r)* (12

for the field point on a dielectric interface; k; and k; are the relative per-
mittivities of the media I and L, which are in contact along the interface.

For points on an interface dielectric-conductor, ¢(r) is constant and the
corresponding integral vanishes, so there is no discontinuity and an equation
similar to Eq. (11) is obtained,

b(r) = — J-@du‘i ! j () o

 dmeyk, R dreyk, R
1 d (1
k; — 1 ’ s’
syt o (e

where k; is the electric permittivity of the medium in contact with the con-
ducting surface at r. Potentials at the conductors are known, so Egs. (12)
and (13) are a system of integral equations for the potential along the dielectric
interfaces and the charge densities on the conductors. Once these unknowns
have been obtained, Eq. (11) gives the potential at any desired point.

An expression for the electric field atr e Vi is also readily obtained from the
potential given by Eq. (11),

I p(r')R 1 o(r')R
E(r) = dv’ ;
(r) dneok, L R3S 4T dneok; LC R’ s

1 ~ 0 (RY
4ﬂkI;(kJ— I)J;J ¢(r){?n’ (R?’)ds’ rev, (14)

withR=r —r’.
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[II. NUMERICAL TECHNIQUE

We are interested in solving the set of integral equations by a method that
must have two main characteristics: power and flexibility. These criteria will
enable the study of a wide variety of problems with the highest efficiency. In
what follows, we describe the numerical technique that we have developed to
attain this goal.

A. Method of Moments

Harrington (1968) has provided a unified treatment for the numerical
solution of linear operator problems. His approach, the method of moments,
involves the expansion of the unknown solutions in a series of basis functions
and the use of a set of weighting functions to obtain a linear algebraic system.
The approach we will follow, closer to the physical picture, is to divide the
contours into a set of subsections of nonuniform size chosen in accordance
with the expected nonuniformity of the potential and charge density. Thus in
the vicinity of metallic corners, the charge density varies approximately asr ",
r being the distance to the corner and n an exponent that depends on the corner
angle (Jackson, 1980). A similar reasoning can be applied to the variation of ¢
along a dielectric interface. Thereafter, we divide the surfaces into pro-
gressively smaller subareas close to the vertex, so that a constant value of ¢ or
¢ can be assumed on each of them. Mathematically it is equivalent to the use
of pulse functions defined over the corresponding subsection as basis
functions in the moment method, but the election of nonuniform subareas has
proved to have an accuracy comparable to that of much more complicated
versions. A second choice, which further simplifies the computation of the
matrix elements, is the use of Dirac delta functions as weighting functions. On
the other hand, we also approximate the space charge distribution by a set of
discrete volume elements in such a way that p can be considered of uniform
magnitude inside each of them; this will facilitate the calculation of the
constant vector of our system.

According to the previous considerations, let the index j go from 1 to k to
account for conducting subareas, from k + 1 to m for dielectrics ones, and
from m + 1 to nfor volume elements. The resulting algebraic system, obtained

from Eqs. (12) and (13), is then of the form

k m n
¢;= ) Ao+ Z B;;ip; + Z Ciip;, i=k+1...m) (15
j=1 j=k+1 j=m+1

m

k n
¢; = const. = _zl Dijﬂ'j -+ Z El-jqf)j —+ 2 F,-jpj,
j=

i=k+1 j=m+1

(i=1...k),
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corresponding to points on the dielectric and on the conductor surfaces,
respectively. The expressions for the coefficients are

Aij = 2naﬂ(k1£ Y k) s il_i‘;dsf (17)
Bij = 2;(1:&1) Lj. ai* (lej) ds (19)
Cy= 2;:5.:,(1;,. k) L R%d”f (19)
e w

with R; = |r; — 1.

Details on analytical evaluations of these coefficients, based on their
physical interpretation, are given below.

The resultant matrix equation has no special characteristics, such as
sparsity or definiteness, but can be solved by standard techniques. We have
used the Crout reduction method (Gerald, 1984). After the determination of
a(r) on conducting surfaces and ¢(r) at dielectric -interfaces, the potential
and field at any point of the space can be calculated from the discrete forms
of Egs. (11) and (14), i.e.,

m n

k

¢(r;) = _;'12'1 D;jgj + j=kz+1 Eij‘i’j + j=§+ 1 F;jpjr r,e (23)
k m n

E(r;,) = j; Ao + j=§+l B¢ + ;=§+ 1 C:-jpj, r,e V. (24)

1 R
Al = _ 4 f
0= T ), R3S 25
k. — 1 0 (R
Br ] J L !
1 R..
C" = LJ '
Yoy dnkies _L R} i (27)
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B. Evaluation of the Coefficients

In calculating these coefficients it is helpful to consider their physical
meanings. Thus, those containing the form f¢ 1/R;ds" or fy, 1/R,;dv" are pro-
portional to the potential created at point r; by a uniform charge of unit
amplitude over the subarea S; or in the volume V;. Similarly, coeflicients
with an integral of the form js_,— o/dn’(1/R;;)ds" are proportional to the flux
of the electric field created by a unit charge at r;, across the subarea §;.
On the other hand, ISJ_ R,./Rjds’ or jp} R,/Rj;dv’" represent the field pro-
duced at r; by a unit charge uniformly distributed over §; or inside V;, and
js_,- d/on’(R;/R 2)ds’ is minus the gradient of the flux of the electric field pro-
duced by a charge at r; across ;.

In problems with rotational symmetry there are two basic types of
subareas into which we can divide any surface: annular and cylindrical.
Moreover, for problems including space-charge effects it is convenient to
consider cylindrical volume elements. For some configurations, truncated
conical subsections would also be adequate, but the calculation of the
associated coefficients involve, in general, numerical integrations and these
will not be treated in the following. In all cases considered, analytical closed
expressions can be deduced for the coefficients. This is an important
characteristic of our version of the method of moments because it allows the
utilization of a minimum size for the matrix equation in the solution of
electrostatic problems.

In what follows, we will give the formulae used in the obtainment of these
quantities; they will be classified according to the type of subareas and volume
elements previously mentioned. Most of the expressions can be found in
advanced electromagnetism textbooks and particularly in Durand (1964), but
we have preferred to list them for the sake of completeness.

1
1. Coefficients Containing the Form J ﬁ—ds’
S; '

ij

a. Circular Annular Subareas The starting point is the potential at the
point (r;,z;) due to a disk of radius R, located at an axial distance z; and
uniformly charged with o,

o T R; —ri
. ] = — &' )= Kk
$(r;, ) Emﬂ[ o1 — &5z +— — KWK

ZE(RJ - ;)
ri(Rg + i)

T1(k, m)} (28)
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where

z = 2z; — z (29a)
ri=[Ry+r)* + z2]"? (29b)

2(Rgr))''?
k = ‘; (29¢)

1

N 2(Ryr;)'?

m = R, +r° (29d)

and K, E an.cl [T represent the complete elliptic integrals of the first, second
a1:1d tthd kind, respectively. The parameters ¢ and & compensate for the
discontinuity in Eq. (28) due to the charge layer and have the values

—1, z<0 (—1, r, <R,
e=4 0, z=0 g =4 0, r,=Ry (29¢)
l, z>0 1, r;>R,.

.

There are several particular cases in which Eq. (28) reduces to simpler
equations,

$(0.2) = 5 - (R§+z2)”2|z|} (30
¢<Rd,zi)=2;£}[ ;IZ+r1E(k)] (1)
bris0) =5 [(Rd +r)E®R) + (R, - rf)K(k)} (32

_T}lﬂ coeflicients we are searching for may now be calculated by super-
position of the potential due to a disk of radius equal to the external radius of
the annulus, charged with ¢ = + 1, and that of a disk of radius equal to the

internal radius, charged with ¢ = — 1.

b. Cylindrical Subareas 1In this geometry the potential created by a semi-

| infinite cylindrical layer is used. That quantity 1s expanded in a series of

f_,egeqdre polynomials and has different expressions depending on the region
in which the field point is located (see F 1g. 2).

F{?r a.pﬂinF ({‘5 ,z;) Inregion I, the potential produced by a cylinder of radius
R, with its origin at z; and charged with o is

o 3R, 1 & C",, (R)\*"
(fb(ri:rzt') T AT ZED |:1[](d as Z) S 5 3 = (d) Pzn—i(CUS 9)] (33)
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(r,z.)

Fic. 2. Different regions for the calculation of the potential due to a semi-infinite cylindrical
layer.

For region II, we have

¢(r:'=zf) -
- Z Coip (Ef)zﬂPgn_l(cos 3)}

Finally, for points in region III the potential is

R. © C" d\*"*!
;E |:1nR + ) > _Il_’le (R) P,, . {(cos 9)], (35)
0 n=0 C

- [211‘1 R, — In(d — z)

(34)

Qb(l‘j,fi) =

where P,(cos 9) are the Legendre polynomials,

1 x3x...x@2n—1),

Crp == 2 x4 x...%X2n

. C(ilfl'z — 1, (36)

and d = [r? + (z; — z)*]"%.

The coefficient associated with a strip of width z;; — z;, is obtained by |

superposing the potentials created by two semi- mﬁmte cylmders of radius R,
charged with densities + 1 and — 1, shifted along the axis and with their Orl-
gins at z;; and z;,.

1
2. Coefficients Containing the Form j R dv’
v, Ry

ij

For this type of coefficient we only have characterized the one correspond- |

ing to a finite cylinder uniformly charged with volume density p, because any
space charge distribution can be approximated by a set of such cylinders.

Hence, we start with the determination of the potential created at the point.

(., z;) by a semi-infinite cylinder of radius R, charged with p (see Fig. 3). This
value can be obtained by integration, through the radial distance, of the

APPLICATION OF THE INTEGRAL EQUATION METHOD 11
(r.,z.)
fj
dﬁr
| 7~
r"f HEA R'"-.
o — — z )
I (N £ S S (VAR
\‘a ‘,f"'f
FiG. 3. Different regions for the calculation of the potential created by a semi-infinite

cylinder.

potential due to a semi-infinite layer uniformly charged (Eqgs. 33 to 35).

Depending on the region to which the field point belongs, different expressions
are obtained. Thus, for region I we have

pRZ | a0

In(d + z) —
4e, @+ 2) n; 2n(n + 1)

‘;b(riﬂzi) —

CZip (‘Zf) HPEH_,I(CDS 9)]. (37)

For points in region II the integration gives

P(r:,z;)

RE[(y)?
- ila [(}{}-’—) [In(d +z) —2Iny + 1] + 2InR, — 1
0 c

B 2 i 2 B B o0 Cr-t-ljz Rc 2n
(1 (Rc) )ln(d z) n; Inin + 1 (d) P,,_ (cos 9)} (38)

When 8 tends to =, the potential converges to the value

RZ - a0 n Zn
: [‘"(R) L+ ¥ S (RYT
4eg 2d n=12nn+ 1)\ d

For region III we obtain

qb(oﬁ Zf) —

(39)

| 4(ri,z)

|

12 2
_ﬁ_g_[(;) [In(d +2z) —2Iny + 1]

4
R y\2
[InR — 0.5] + [(d) — l]ln(d —z)+ Ind — 0.5
o 20 ) S Al c*
o iy 5 1;‘2
H;g (1 s 4?’12 [(Rc) 1:|

2(n + (n + z))P 2n+1(C0S 9)].
(40)
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For 3 = =, this expression gives

d* [ [R.\?
e Km> (InR, —0.5) —In2 — 0.5

de, d
d 2n—1
- — 1
(&) ]

$(0,z;) =

n+ 1
C—I,FE

2(n + 1)(n + 2))]' (1)

Finally, for region IV,

2 2
O(r;,z;) = — ii |:1n(d + z) + (%) (InR, — 0.5) — Ind + 0.5
€0
© [2C% ), d\*""? C™
— — | — P, . 3) 1.
” ,,ZD (1 — 4n? ]:(R,:) 2+ Dn+2)) " 1608 )
(42)

In these formulae y = dsin 3, P,(cos 3) are the Legendre polynomials, and
coefhicients C” |, are given in Eq. (36).

The potential due to a finite cylinder 1s obtained by superposing the
potentials created by two semi-infinite cylinders of radius R, charged with
densities + 1 and — 1 shifted along the axis for a distance equal to the length of
the cylinder. Finally, the potential due to a hollow cylinder 1s given by the
appropriate superposition of two cylinders of radii R, and R, equal to the
internal and external radi of the annulus, respectively.

0 (1
3. Coefficients Containing the Form , ds’
s; 0n' \ R;;

In this case we are dealing with the calculation of the flux of the electric
field of a charge g, at (r;, z;), through the area S;.

a. Circular Annular Subareas We first write the flux of a charge ¢
through a disk of radius R,;1n this equation we take as positive the flux toward
the negative z direction,

F(S) = 1 [s(l — &) + E[];:*'(I — m?)V2 11 (k, m) — K(k):|, (43)

dre, r

where z, k, r{, m and ¢, ¢" are given 1n Eqgs. (29a to 29e).
For some particular cases we have

q Z
o e LR

E(S;) (44)
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£ zK (k)

(5) q(ﬁlaﬂ 21:501‘1) ’ or 1= (R z) (43)

F(S;) =0, for r;, =(r;,0). (46)

The value we want may be obtained by appropriate superposition of the
flux across two disks.

b. Cylindrical Surfaces The flux through a semi-infinite cylindrical layer

{ is related to that of the disk. For example, it 1s easy to see in Fig. 4 that for a

charge g in the region z = z; — z; > 0, the field lines that enter the circular area
of radius R, are the same as those that give the net outward flux through the
cylindrical surface. Let F; be the value obtained in Eq. (44) and E,. the flux we
look for; depending on the relative position of g, E is given by

F, =k,
F, = F, + 4ngq,

z>0 or z<0 and (47)

(48)

for r; > R,

for z<0 and r;,<R,.

There are also some particular expressions; thus in the plane z = 0 the
flux 1s

i

0, r; > R,
F,={nq, r;=R, (49)
_2nq, r; < R,
and for r; = R,
F;, z>0
F=q7 (50)
F,+mngq, z<0O.

As 1n the previous calculations, the flux across the cylindrical layer is

computed by superposing the contributions of two semi-infinite cylinders
conveniently shifted along the axis.

field 1inE-5_{ g
/37
Rc / /
/
/ /

B A

F1G. 4. Diagram for the calculation of the flux through a semi-infinite cylindrical layer.

I_}
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R..
4. Coefficients Containing the form L R%dﬂ’.
j i

a. Circular Annular Subareas The components of the field at (r;, z;), due
to a disk of radius R, charged with ¢ at z;, are

1l k?
Eirvm) = 5o | (1= Koo — B0 51)
E.(r;,z;) = 4; I:E(l — &\ + 3—2 [8"(1 —mA) 2 (k,m) — K(k) | |, (52)

where the variables and parameters have the same meaning as in Egs. (28)
to (30).
Particular simple cases are

o 1

_ 2 2 e 2
Er1,0) = 3o —— g 07 + RDK(m) = i+ RPEm] ()
R 1
}32(0,,.-2,;.)_';8 | ;3 —~— (54)
()

The expressions for circular annular subareas are obtained by adequate
superposition.

b. Cylindrical Subareas We have now for a semi-infinite cylindrical layer

the expressions

.
E(r.z) = — | (1 + &) — —[&/(1 — m®)Y2[(k,m) + K(K)] |  (55)
mey i | 4 2r,
k
E.(r;,z;) = ok K ).-. (56)
ey Ty

with the customary meaning for the symbols used.

The field for a finite cylindrical surface is obtained by superposition of two

contributions of this type, adequately shifted.

R..
5. Coefficients Containing the Form J; R—;dv’
j i

We restrict our attention to cylindrical volume elements. To obtain the

components of the field due to a cylinder, we have performed an approac

similar to that used for the coefficients F;;. Thus, for the axial component E, at
the point (r;,z;), the elemental contributions of semi-infinite cylindrical

APPLICATION OF THE INTEGRAL EQUATION METHOD 15

surfaces, uniformly charged, are integrated. We have

R: -’K
o [,

TTEg Jo Fq

E.(ri, z;) (57)

As there is no closed analytical expression for Eq. (57), we have developed K (k)

in a power series and performed the integration term by term (Byrd and
Friedman, 1971). We then write

Ez(ri! zi) - z 2°m CmrEH Tm+ 1 dr’ :
8{} m=0

o I

(58)

where c,, are the coeflicients of the expansion for K (k). The integrals appearing
in Eq. (58) are reducible to a summation (Gradshteyn and Ryzhik, 1980).

For the radial component, it is easier to use flat disks, uniformly charged,
as differential elements and extend the integration between the limits z, and
z, of the cylinder, that is

E : o — — . '
(7, z;) e, L - ((1 5 )K(k) E(k)) dz'.

We also expand E(k) in series. Then after some algebraic manipulations,
Eq. (59) becomes

(59)

Er(riizi) —~ p( Z ZZ[m_I]r;ﬂ_lR;ﬂ(cm T dm o O'SEml)J Er:~1 dz,):
2 : I

& =
0 \m »

(60)

}vhere d, are the coefficients of the series development for E(k). Again, the
Integrals in Eq. (60) are calculable by means of the appropriate reduction
formulae. Furthermore, it is possible to generate each term using calculations
previously stored, which allows for a very efficient algorithm.

6. Coefficients Containing the Form 9_(Ry ds’
s, 0n’ \R;;
In tl?is case tl?e components can be obtained by derivation of the cor-
responding electric flux given by Egs. (43) to (50). We will not include the

rather complex expressions, some of which can be consulted in Algora del
Valle et al. (1987).

IV. EXAMPLES

The integral equation formulation described in Section II can be applied to
the study of a great variety of problems in which the potential distribution, for
a given set of boundary conditions, is needed. In this section we intend to
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illustrate with three representative examples, the way that must be followed for
the obtainment of the parameters characterizing the system under analysis.
The first one is a bioelectrical problem dealing with transport through 1on
channels in membranes; its simulation requires the use of two dielectric media
as well as polarizing conductors. The second and third examples are related to

the Electron Optics area: given a distribution of polarized conductors, their

imaging properties are investigated. The last example also shows how space-
charge effects can be incorporated into the equations. The particular version
of the numerical technique developed here limits the applicability to problems
with rotational symmetry; however, this is not a serious restriction as many
practical systems can be represented by this type of geometry.

A. Electrostatic Model for Ion Channels

Biological cells are surrounded by a membrane that protects their com-
ponents from the environment. In most cases, the membrane consists of a
lipid bilayer forming a dielectric shield that prevents penetration by ions. It
can be shown that the lipid represents a large electrostatic energy barrier
(Parsegian, 1969). Of course, metabolites must traverse membranes, and
several transport mechanisms have been proposed (Fromter, 1983). One of the
most relevant is the transport mediated by fixed channels, where the particle
crosses the membrane through a performed permeation path. During the last

years considerable experimental, as well as theoretical, work has been done in

order to get a deeper insight into that mechanism (Andersen, 1983; Jordan
1986; Jordan et al., 1989).

It is generally agreed that long-range electrostatic forces significantly
influence ionic transport through membrane spanning channels. An adequate

integral formulation of the problem will allow us the analysis in detail of this
type of interaction. A different integral approach has been formulated

previously by Jordan (1982), but it was inadequate for the incorporation of |

exact boundary conditions.

1. Image Potential

Figure 5 shows a schematic drawing of a cylindrical channel piercing a'

membrane of electric permittivity ¢,. The pore and the water are supposed to
be characterized by the same permittivity ¢,. An ion of charge g 1s located at
z, and induces surface charges along the phase boundaries. Certainly, real
channels will not have exact rotational symmetry, but this approximation will
permit the use of our numerical technique without introducing too much
error.
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Fic. 5. Cross-sectional diagram of a cylindrical channel spanning a membrane of electric
permittivity ¢,. The bulk water and the channel region have the same permittivity ¢, .

According to the formulation given in Section II, the potential at a point
lying on the membrane boundary is obtained from Eq. (12). In this case there
are not any conducting surfaces and the expression reduces to

B 1 q y — 1 0 (1 f
Plr) = 2ne,(y + 1) |r — zok| T 2n(y + 1) LM ¢@n’ (R) i (61)

where y = ¢,/¢, and the normal n’ 1s taken in the direction outward from the
membrane.

For the numerical solution of Eq. (61), we make a division of the phase
boundary into n small subareas that have the form of flat circular annuli or
cylindrical sections and assume that the induced potential on each of them is

constant. Hence, the above expression can be approximated by the set of
algebraic equations

1 q n
A1 = « 1) - ] —
i(r;) TP T E— +J_‘:;1 B.b:,, (i=1...n), (62)
yr—1 [ 0 [1
Bi' — d. I,

r; being the position vector of the midpoint of S;. The matrix elements B;; are
proportional to the flux of the electric field created by a unit charge at I; aCross
SJ,: and can be obtained from Egs. (43)-(50). After computing the potential
distribution along the phase boundary, application of Eq. (11) enables us to
find the potential at any point of the aqueous medium. This value is given by

1 q x— 1 &, iefir]
B(r) = 4 2l of Xy,
(") dmey |r — zok|  4dmy SM¢ on’ \ R as’ (64)
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Fi1G. 6. Image potential ¢,,,, for an ion at the center of the channel as a function of the half-

width to radius ratio, . The asymptotic value (broken line) for an infinite pore is 0.978 volts.

which, expressed in a discrete form and ignoring the contribution of the charge
g, may be used to determine the image potential ¢,,,, 1.€., the potential created
by the induced charges at the 1on position z, along the channel axis. Figure 6

shows this value, for a monovalent cation at z, = 0 as a function of the half-

width to radiusratio,o = h/r,. We have chosen¢; = 80 ¢,and ¢, = 2¢,, which
approximately represents a lipid-water system.

The image potential 1s positive, as might be expected for ¢;/¢, > 1, and
increases with o. It tends to the asymptotic value 0.978 volts obtained for a
pore of infinite length (Parsegian, 1975).

Finally, we must point out that for a Gramicidin-like channel (6 = 5) the
potential barrier for passage of a monovalent cation is 0.476 volts, a still

significant value. As we will see, this barrier may be altered by the presence of

other charge sources such as dipoles along the channel, charges on conductors

placed near the membrane, etc.

2. Polarized Channel

When a voltage 1s applied to the pore, Eq. (61) must be modified in order to |
include the effect of the charges on the electrodes; in addition, there is another
expression for points lying on the conducting surfaces S., derived from

Eq. (13). We assume that the electrodes are flat circular disks, placed at both

sides of the channel at a distance F h’ from the center and polarized with + V.
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For simplicity we also take g = 0. Then we have

y — 1 o (1Y, 1 [
PO =+ 1) LM“"an’ (R)‘“ T 2ner + 1) LCR s )

r € diel. bound.

y — 1 d (1Y) . , 1 G
P(r) 4my Lmqb cn’ (R) as’ + dme, LE R ’ (66)

r € cond. surf.

¢(r), being in Eq. (66), equal to + ¥, depending on the position of r.
Applying the same numerical technique as in the previous study we obtain

¢; = '21 Bjp; + ZH Ayoj,  (i=1...n), (67)
ji= j=n
" m +Vy,z;=—h _
“:‘bl = E Elj‘ijj + Z DUUJ = g ) (I = Hn + 1 . .m), (68)
ji=1 j=n+1 —VU,Z,; = h

where A4;; and D;; are related to the potential that is created at point r; by a
uniform charge density of unit amplitude over §;. These coethicients may be
computed by means of the corresponding analytical expressions given in
Egs. (28)—(36). When the algebraic system is solved for g; and ¢;, we are able
to determine the potential at any point of interest. Table I shows field at
the center of the channel (in units of V,/d) and the fractional potential drop
across the channel, as functions of the ratio J. It must be pointed out that
these quantities depend on the electrode position, the tabulated ones cor-
responding to a distance h' = 6h. Jordan (1982) has reported values for

TABLE I

ELECTRIC FIELD AT THE CENTER OF THE CHANNEL AND FRACTIONAL
POTENTIAL DRrROP AS FUNCTIONS OF THE RATIO 0

Field at the center Fractional potential drop

. (Vo/5) VIV,
150 0.815 0.792
10.0 0.794 0.772

f g 0.774 0.752
5:0) 0.738 0.716
2.5 0.648 0.625
P 0.526 0.499
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VIV, of 209, greater than that shown in Table I; this is presumably due to
the fact that the procedure used by Jordan to include the effect of the applied
potential is strictly correct only in the limit of very long, narrow channels
and overestimates the field in the pore interior (Jordan, 1989).

3. Dipolar Effects

It 1s known that the kinetics of narrow channels, such as Gramicidin in
lipid membranes, is strongly influenced by electrostatic interaction between
the 1on and the permanent dipoles of the polypeptide. Furthermore, several
recent studies have focused on the behavior of analogues of Gramicidin A
in which one or more amino acids were replaced by others with side chains
of different polarity (Andersen et al., 1987; Daumas et al., 1989).

To simulate this experimental situation, dipolar rings near the pore wall
are superposed to the geometry given in Fig. 5. These distributions are
characterized by a total moment p and can have radial and axial components
and be situated at different positions along the channel lumen.

For the polarized channel, the corresponding integral equations are now

o1 J (1) ,, 1 o,
o) = ¢ ( )dS +2n82(x+l)Lc_R_dS

2n(x + 1) Js,, On \R
+ 2 bm diel. bound (69)
——=— ¢(r), r € diel. bound.,
x+ 1
¥y — 1 ¢ (1 1 9
5 - ds’ | —d N
»(r) 4y Lmqbﬂn’ (R) : dre, LE R i
+ ¢4(r), r € cond. surf, . (70)

where ¢, 1s a source term containing the contributions of both ion and dipolar
rings and represents the potential of these charges in an indefinite medium of
permittivity ¢,. The partitioning of the boundaries into small subareas in
which the unknowns—charge densities or potentials—are supposed to be
constant gives the corresponding set of algebraic equations. Its solution
allows us the determination of the potential along the channel axis for several
different situations. After a systematic analysis of the computed data we
conclude the following remarkable results: 1) Radial components of the dipole
moments have very little influence on the potential profiles. This can be
interpreted as produced by the cancellation of the dipole field by the “image
dipole” induced in the medium ¢, . In the case of axial dipoles, both potentials
add. 2) The effect of “negative” dipoles (pointing toward the channel center)
1s to increase the central barrier, while positive ones facilitate ion passage.
3) Negative dipoles at the center of the channel tend to sharpen the barrier.

APPLICATION OF THE INTEGRAL EQUATION METHOD 21

Positive dipoles tend to widen it and produce a central potential well. 4) Large
positive dipoles can produce noticeable wells at the channel mouth.

Figure 7 illustrates the effect of two axial dipole rings located at +hin a
gramicidinlike channel; in Fig. 8 the contributions of four dipole rings, two at
the ends and two at the center, are superposed.
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1 |
Z
Q.4+ 9 i
>
g .
= 02r
=z
L
|_
o
a
0.0F -
|
_D-‘z L I I L | | |
A -2 0 2 &4
z/h

F1G. 7. Potential profile in a channel with one dipole ring at each mouth. (Vo =25 mV;
dipole ring radius r; = 0.99 r; 1: p = —3 Debyes; 2: p = 0; 3: p = + 3 Debyes).
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F1G. 8. Potential profile in a channel with four dipole rings: two at the center (+h/12.5) and
One at each mouth. (V, = 25 mV; dipole ring radius rg = 0.99r.; p = +8 Debyes).
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It can be seen that axial dipoles pointing toward the pore mouths
produce binding positions for the ion and produce potential profiles, such as
the one depicted 1n Fig. 8, which have been proposed to explain the current-
voltage characteristics of Gramicidin channels (Levitt, 1986).

B. Four-Aperture Electrostatic Lens

The electrostatic lenses that have been used to focus beams of charged

particles have usually consisted of either two or three electrodes, each having

the form of either an aperture or a cylinder. The focal properties and
aberrations of such lenses have been extensively studied (Grivet, 1972; Harting
and Read, 1976; Hawkes, 1987). Although multi-electrode lenses (by which we
mean lenses consisting of more than three electrodes) are expected to be better
for some purposes and to have properties that are more flexible than those of
the simpler two and three electrode lenses, they have been studied less often. In

characterizing such lenses Heddle (1971), Kurepa et al. (1974) and Chutjian |

(1979), have made the approximation of treating them as combinations of

independent two and three element lenses, which is valid only in a restricted
range of geometrical configurations and operating voltages. More recently we
have applied our method to the analysis of a four-cylinder lens (Martinez
and Sancho, 1983b). As in calculating the axial potential distribution, the

technique deals with all the electrodes as a whole; we were able to characterize

the operating conditions of practical interest without restrictions. In this

paragraph, we present the study of a four-aperture lens following a similar
development.

1. Calculation of Electron-Optical Properties

Figure 9 shows a cross-sectional diagram of the lens chosen for study. An
external equipotential contour, added for the sake of calculation of the optical
parameters, is not shown in the figure. The configuration has a horizontal axis
of rotational symmetry and a plane of symmetry perpendicular to this axis

(the reference plane). The diameter D of the apertures is taken as the fun-

damental unit of length, and all the parameters will be expressed in units of

D. The spacings S between the electrodes are 0.5D, and their thicknesses T are
0.05D. It 1s assumed for convenience that the lens i1s to be used for focusing

electron beams and that the applied voltages V,, V,, V5 and V, are measured

with respect to the cathode from which electrons originate.

We can apply the integral formulation to a set of polarized conductors in |

vacuum and in absence of space charge and use Eq. (7). For the purpose of

calculation, the electrodes are divided into n subareas that have the form of flat

circular annuli or narrow cylindrical sections. Under the assumption that the
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F1G. 9. Cross-sectional diagram of the four-aperture electrostatic lens chosen for study. The
fundamental unit of length 1s the diameter D. The potentials V,, V,, V5 and V, are measured with
respect to that of the cathode.

charge density o; 1s constant on each subsection of area S;, the potential at the
midpoint r; representative of the subsection i can be expressed as

660 = Y, Dyojy (i =1...n) 71)

with

1 ds’
D.—— | =
;4 47?.:80 J‘Sj RU (72)

Having evaluated coefficients D;; by means of the appropriate formulae given
in Section III, Eq. (71) can be solved to obtain the charge densities. At this
stage we are able to determine the potential at any point within the lens.

In particular, we can compute the axial potential, ¢(z), that will allow the
characterization of its optical parameters.

Sﬁince the reference plane of the lens is a plane of reflection symmetry it 1s
possible to halve the number of subsections required by making use of

Symmetric and antisymmetric configurations to express ¢(z) in terms of the
superposition (Martinez and Sancho, 1983b)

qfa(z) =5 0-25(V1 [5E Vz Fil V3 5 V4)¢’a i 0-25(“ Vl gt Vz & Va 7T V4)¢'b
U2V Vs -V VD)o, 0250V, + V, + s+ V,), (73)




24 G. MARTINEZ AND M. SANCHO

where ¢,, ¢,, ¢. are the axial potentials when the electrode potentials
(Vy,V,, Vs, V,) have the values (1, —1,—1,1),(—=1,—1,1,1),and (— 1,1, — 1, 1)
respectively. For each of these sets of electrode potentials the charge dis-
tribution is either symmetric or antisymmetric about the reference plane, and
and hence only subsections on one side of the plane need be considered.

The first order properties of the lens are completely characterized by the
focal and midfocal lengths, which can be obtained by integration of the Picht
equation (Grivet, 1972)

dz? 16 \ ¢(2)

where R(z)is the reduced ray path and where the derivative ¢’(z) is determined
by numerical differentiation of ¢(z). The integration of Eq. (74) has been
carried out by a second order Runge-Kutta method. Because the starting and

final points of the trajectories are taken to be in field-free regions on either side

of the lens, all the values obtained are asymptotic parameters.

Calculated values of the object focal and midfocal lengths, f; and F,
respectively, and image midfocal length F, as functions of V,/V; are given in
Fig. 10. The corresponding values of the image focal length f, can be deduced

from the relationship

fz - (Va/Vﬂ”Zfl- (75)

A comparison with the parameters of the four-cylinder lens (Martinez and

Sancho, 1983b) shows a very similar behavior, although the lens studied here

is, in general, stronger.

Since the trajectories of the charged particles in the lenses having voltages :

V., V,, V5 and V, are the time-reversed ones of those in the retarding lenses

having V', = V,, V, = V5, V5 =V, and V), = V}, the calculated parameters
can be used for obtaining those of the complementary retarding lenses (see

Martinez and Sancho (1983b) for the conversion formulae). In this way the

range of voltage ratios V,/V; for which the focal lengths have been calculated

can be extended to include retarding lenses having V,/V; as low as 0.1.

The spherical aberration can be characterized by the third-order coeffi- |

cient C, defined by the relation (Grivet, 1972)

Ar = MC.a3, (76)

where Ar is the radius of the disk formed in the Gaussian image plane by
nonparaxial rays starting from an axial object point with a maximum half
angle o, and M is the linear magnification for a given object position. Further,
it can be shown that C, is a fourth-order polynomial in 1/M (Harting and
Read, 1976):

CS(M) ™ Cs{} -+ CﬂM—l T CSEM_E “t Cz.-aM_3 i C54M_4- (77)

d’R(z) 3 (tﬁ’(Z))z R(2). (74) |
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Thus, the coefficients C; are frequently used to characterize the spherical
aberration. Table II shows the values obtained for the einzel operating mode
VilVi = L.

2. Energy Scanning at Constant Image Position and Magnification

Triple-electrode electrostatic lenses have two variable voltage ratios, and
so they can be used to focus a beam of charged particles in such a way that the
image position is kept constant while the ratio of the final to initial energy of
the charges 1s varied (Heddle and Kurepa, 1970; Harting and Read, 1976). In
general, the linear and angular magnifications are not constant. If it is required
to keep two parameters constant, such as both the position and magnification
of an image, a third variable, voltage ratio, 1s necessary and the lens must
consist of at least four electrodes. In a previous study (Martinez et al., 1983) we
showed how a four-cylinder lens can be used to provide an image at a fixed
position together with either a constant linear or angular magnification. In
what follows, we extend the analysis to a four-aperture lens.

The geometrical configuration of the lens chosen for study is the same as
that considered 1n the preceding subsection, (cf. Fig. 9). For a given set of
electrode polarizations, the image linear magnification M, the focal lengths f,
and f,, the midfocal lengths F; and F, and the object and image distances P
and Q are related through the expressions (Harting and Read, 1976)

J1 O-— F

M: ==
i 3 /2

(78)

In choosing the most appropriate combinations of P, Q and M values, it is
important to bear in mind the behavior of the system as the voltage ratios
V,/Vi, V3/Vy and V,/V, are changed. As an example we show in Fig. 11 the
relationship that must be maintained between V,/V; and V,/V, to keep either Q
constant (full curves) or M constant (broken curves), when P and V,/V; have
the fixed values 2 and 5 respectively. If both Q and M are required to be
constant, then the necessary values of V,/V; and V;/V, are given by the points
at which the full and broken curves cross. For example there are two cross-
ing points corresponding to Q =4, M = —2, one corresponding to Q = 2,
M = —1, but none corresponding to Q =2, M = — 2. By plotting such curves
for other values of V,/V, (while keeping P constant), we are thus able to deter-
n_'u'ne the relationship that must be maintained between the electrode poten-
tials for those combinations of P, Q and M for which crossing points exist.

Not all the crossing points represent experimentally suitable modes of the
lens. Thus, the crossing points for Q = 4, M = — 1 have low values of both
V2/V} and V4/V; and occur in a region where the Q and M curves tend to lie
close to each other, which implies that Q and M are sensitive to small changes
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TABLE II

SPHERICAL ABERRATION COEFFICIENTS FOR THE MODE V,/V, = 1

e

VEA/VJ. - 0
VE/ Vl C.sﬂ Csl Cs}! : Cs?: Cs-r-L
L4043 6.47 E+1 5.29 EO 1.75 E+1 6.15 EO 1.01 E+1
0.0 9.00 EO LON6TE Ll 3.68 E+1 L0 G 1 9.00 EO
0.5 1.07 E+2 —405E+2 584 E+42 0 T oy, 9.54 E+1
1.0 490 E+2 —1.94 E+3 290 E+3 —194 E+3 490 E4+2
2.0 465 E+2 1 R0E+13 264 E+3 S5y e i il 430 E+2
5.0 261 E+1 BE-D o) o SLG) 1.08 E+42 —6.62 E+1 1.65 E+ 1]
10.0 4.52 EO —9.69 EO 1.02 E+1 —6.38 EO 2.39 E0
V,/V, = 0.5
& 0.2 125 E+1 LASTE £ 690 E + 1 —498 E+1 147 E+1
0.0 9.53 E+1 BEEYL | ) 583 E+2 —4.05 E+2 107 E+2}
0.5 347 E+3 o fye {1 2 | 2.07 E+4 _ 138 E+4 347 E+3
1.0 838 E+4 LRSS 503 E+5 B e Lo o B 838 E+4
2.0 439 E+3 _1.73 E+4 2.57 E+4 —1.69 E+4 420 E+3
5.0 286 E+1 2l 10l B2 140 E42 —0!114B 44 236 E+1
10.0 3.80 EO —9.10 EO 1.08 E+1 —17.54 EO 2.84 EO
203 3.88 E+1 3 SUE Y 540 E+2 37418 19 988 E+1
0.0 4.28 E+2 AT B3 2.63 E+3 179 E 43 4.63 E+2
0.5 419 E+3 _1.69 E+4 256 E+4 SHTIE va 437E+3
1.0 9.69 E+3 387 E+4 579 E+4 —386 E+4 9.65 E+3
2.0 127 E+3 —5.03 E+3 753 E+3 803 B3 1.27 E+ 38
5.0 211 E-Ld M 1y {05 Bl —9.08 E+1 2.59 E+1
10.0 2.83 EO —7.39 E0 1.L1I0 E+1 —9.30 E0 3.77 EO
VE/VI — 5
2653 1.18 E+1 —4.81 E+1 821 E+1 — 673 E+1 221 E+' 8
0.0 1.64 E+1 —6.55E+1 107 E+2 R e 41 258 E+1
0.5 233 E+1 O D IR ] 139 E+2 —998 E+1 283 E+1
1.0 274 B L 102 B42 149 E+2 Ol E42 270E+ 1
2.0 Y STIR _902E+1 124 E+1 _805E+1 210 E41
5.0 9.34 EO " 267 E+1 3.56 E+1 i 7 Tl g 9.34 EO
10.0 3.10 EO —4.70 EO 7.01 EO L9 ED 4.05 EO
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FiG. 11. The relationships that must be maintained between V,/V; and V;/V, when P = 2,
V,/V, = 5, and either Q is constant (full curves) or M is constant (broken curves).

in V,/V, or V;/V,. Furthermore, the angle of crossing is very small at these
points, and so it is difficult to establish the values of the potentials accurately.
This type of working point is therefore excluded from further study. The other
crossing points showed are suitable, however. The two that have the highest
values of V,;/V, give the smallest aberration coefficients, and so we have
searched for this type of working point for all the combinations of P, Q and M
that we have considered. When this type does not exist or when it exists over
only a small range of values of V,/V;, we give, instead, data for the crossing
points that have the lowest values of V;/V].

For convenience, we present the data on the required voltage ratios 1n a
parametric form for five sets of values of P, Q and M. The voltage ratios of each
set are fitted by least squares polynomials giving

V2 iA ; s iB . (79)
TR, - e nx s
V1 n=20 Vl n=0

where x = V,/V,. For sets 1 and 4, two series of coefficients 4, and B, are
necessary to cover the whole range of the variable x. The values of the fitted
coefficients for the five sets are given in Table III.

If one of the focal parameters is known for a constant P, Q and M
condition then the remaining three can be obtained from Eq. (78). We therefore

show in Fig. 12 the dependence on V,/V; of the object midfocal length F, for
cach of the five sets.
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F1G. 13. Variation of C,/D with V,/V, for the five sets of values, P, Q and M specified in
Table III.

The retarding version of the set labeled 4 has the same values of P, Q and M
(namely 4, 2 and —0.5 respectively) as the accelerating version of the set
labeled 5. Hence the total range of values of V,/V; for which these values of P,
Q and M can be maintained extends from 1/20.6 to 11.5, thereby covering
more than two decades. Similarly sets 1, 2 and 3, all of which are self-reversing
(nthesensethat 2 =0 =P = Q' .M = M) have V.. /V; rangesof 1/52 052,
1/11.2 to 11.2 and 1/5.2 to 5.2 respectively. These ranges are notably wider
than those obtained by the authors for the four-cylinder lens (cf. Martinez
et al., 1983). This characteristic together with the fact that the four-aperture
lens is comparatively more compact makes it, in general, preferable.

C. Space-Charge Effects in Lenses

An interesting aspect of the integral equation method is that it lends itself
readily to the solution of electron-optic problems involving space charge.
However, as has been noted by Kasper (1987), the direct evaluation of the
integral contributions of space charge elements to the potential and the field
may represent a great amount of computing time.
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Renau et al. (1982) have described the general application of the for-
mulation as well as their version of the numerical technique. These authors
included space-charge efiects using the approximation of linear segments of
charge.

Given the error cumulative characteristic of the trajectory computation
and the iterative scheme used in this algorithm, it 1s advantageous to use
analytical expressions for the elementary contributions of the space charge.
We illustrate this procedure in the following study.

|. Formulation of the Problem

Figure 14 shows a cross-sectional diagram of the system under study. We
are dealing with a lens proposed by Liebl (1983) for a SIMS equipment. It
consists of three plane-apertured electrodes arranged coaxially on the normal
of a conducting surface. For the given values of the potentials applied to the
electrodes and neglecting space-charge efiects, the lens focuses a primary beam
of single charged positive ions into a very thin spot and, at the same time, acts
as an emission lens for secondary negative 1ons originating from a surface
point.

In a previous work (Martinez et al., 1987), we have obtained some of the
trajectories for primary and secondary ions and the results agree qualitatively
well with those given by Liebl. Now, we study the case in which the perveance
of the primary beam, defined as P = M'/2IV~>/% for singly charged ions of
mass number M, is high enough to cause space-charge effects.

Consider the primary beam traveling through the lens. The integral
equation for the potential at any point on the electrodes is the same as in
Eqg. (7) except for a source term that takes into account the contribution of

the beam; hence
o o)t piy o
¢(r) i, (LC R ds' + LE R W ) (82)

0.4h

r i
h
i TARGET __ v, -0
F1G. 14. Cross-sectional diagram of the assembly. Primary ions, generated in a region at

potential V,, enter the lens with energy e(V, — V;); secondary ions leave the target with energy
eV, ~ 2—-10 eV. The operating voltages are V;, = V, = 3.55 V, and V,=4.5V;.
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where a(r’) are the charge densities on the surface S of the conductors and
p(r’) 1s the beam charge distribution in the volume ¥}.

For the numerical solution of Eq. (82) we make, similar to the previous
cases, a division of the conductor surfaces into n subareas and the beam into m
volume elements and assume that the charge densities in each of them are
constant. For simplicity, we take the volume elements with the form of small
cylinders, and the radius of each cylinder is taken to be equal to that of the
beam envelope at z; = (z,; + z,;)/2, where z, ;and z,; are the axial coordinates
defining the cylinder. We then have

n n+m

ML) = Z D;o; + Z Fip;, =1 n (83)

j=1 j=n+1
where D;; is given by Eq. (72) and

1 1
i il o8 84
dre )y Ry (85

F..

ij

Having in mind the physical interpretation of D;; and F;; we can compute

these coefficients by means of the corresponding expressions given in Sec-

tion I1I (see also Martinez and Sancho (1988) for details).

2. Computation of the Trajectories

The solution to Eq. (83), together with the trajectories in the beam, are

obtained by an iterative scheme. This has been done with some approxi-
mations in order to simplify the computer program. First, the primary ion
source 1s ignored and the integration starts at a distance h from the third
aperture with zero slope; second, a uniform beam density along the radius has
been assumed; third, collisions between primary and secondary ions are

ignored and the beam is treated as laminar; and finally, the effect of the axial
component of the beam is neglected as it i1s much lower than the one produced
by the lens.

As a first step in the iteration, the primary beam profile is determined with
all the p, values equal to 0. The resulting beam is divided into small cylinders
and a charge density p, is assigned to each, according to the current density
and velocity at the point (r,,z,). The surface charge densities are then

recalculated by means of the expression

=Y [D*L—f(qﬁj Y f;-kpk) (i=1...n) (85)

= k=n+1

obtained by matrix inversion of Eq. (83). The beam profile is redetermined

using the new o; and the p,. Several iterative cycles are completed until the

beam profile does not change appreciably.
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In calculating each new beam profile, we need to know the electric field
created by the beam itself. To obtain the radial component of the field, we use
Eq. (60). Adding the contribution of the lens we have the total field at each
point of the trajectory and then the integration is performed by a central
difference formula.

Figure 15 illustrates the results for five values of the perveance; as P in-
creases, the lens 1s less effective in focusing the primary beam and the repul-
sion becomes more and more important. The number of required iterations
also increases with P from two to five. Figure 16 shows the influence on the
the secondary ions. For P = 10" (4V >?) the trajectory for a second-
ary 1on, which emerges with an initial energy of 4 eV and parallel to the
axis, 18 very similar to that obtained ignoring space charge. For higher
perveances, the lens focusing action is screened and even annulated by the
positive beam.

R T R
z(h)

FIG. 15. Profiles of an Ar™ ion beam for five values of the perveance. The target is located at
z = 0 and the electrodes at z/h = 1, 2, and 3, respectively.

20,

.EDJE:
A [0
£
= 10 2 x10-°
05
e e - e

Z(h)

F1G. 16. Trajectories of a secondary negative ion of atomic mass 100 for three values of the
perveance of the primary beam.
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V. CONCLUSIONS

The examples presented in the previous section show clearly that the in-
tegral equation method represents a quite advantageous formulation for the
majority of electrostatic problems, the exception being those with permittivity
varying continuously through the medium. The method has several charac-
teristic advantages: the geometry effective dimension is reduced by one; the
potential and field are obtained at any particular point independently from
others; and for a given geometry, the matrix coefficients can be obtained once
and then used for different conditions of polarization or source distributions.

It has been argued that the integral equation method is awkward to apply
because i1t requires numerical evaluation of complicated integrals appearing
in the matrix elements due to the use of nontrivial basis functions. We have
shown that these coefficients can be calculated analytically—for systems with
rotational symmetry—without loss of accuracy. This can be achieved by
taking constant basis functions and making a nonuniform division of the
boundaries according to the expected variation of the fields along them.

The accuracy of the results depends mainly on the number of subareas
used to simulate the system. In all the studied cases, fulfillment of boundary
conditions permits an error estimation for the potential values less than 0.5%;.
It is believed that this is quite tolerable for most practical purposes, since the
actual physical problems will seldom coincide with the proposed models. This
high precision is possible with a moderate matrix size. For instance, the matrix
maximum dimension used for the ion channel model was 80 x 80, which
implies an optimum behavior in the computing time and memory size
required.

Significant developments of the integral equation method are desirable
and also expected in the near future. Analysis of systems with not exact
rotational symmetry, as the gramicidin channel, could be undertaken by a
perturbative technique without introducing an excessive complexity. In the
Electron Optics field, the introduction of nonuniform space charge beams
would be useful for many practical problems. Work 1is, at present, being car-
ried out in both these directions.

REFERENCES

Algora del Valle, C., Sancho, M., and Martinez, G. (1987). J. Appl. Phys. 61, 4571.

Andersen, O. S. (1983). Biophys. J. 41, 119.

Andersen, O. S., Koeppe, R. E. I, Durkin, J. T., and Mazet, J. L. (1987). In “Ion transport through
membranes,” p. 295. Academic Press, New York.

e Y

APPLICATION OF THE INTEGRAL EQUATION METHOD 41

Byrd, P. F., and Friedman, M. D. (1971). “Handbook of Elliptic integrals for Engineers and
Scientists.” Springer-Verlag, Berlin.

Chutjian, A. (1979). Rev. Sci. Instrum. 7, 981.

Daumas, P., Heitz, F., Ranjalahy-Rasoloarijao, L., and Lazaro, R. (1989). Biochimie 71, 77.

Durand, E. (1964). “Electrostatique 1.” Masson, Paris.

Fromter, E. (1983). In “Biophysics.” (W. Hoppe, W. Lohmann, H. Markl and H. Ziegler, eds.),
p. 465. Springer-Verlag, Berlin and New York.

Gerald, C. (1984). “Applied Numerical Analysis.” Addison-Wesley, Massachusetts.

Gradshteyn, I. S., and Ryzhik, I. M. (1980). “Tables of Integrals, Series and Products.” Academic
Press, New York.

Grivet, P. (1972). “Electron Optics.” Pergamon Press, Oxford.

Harrington, R. F. (1968). “Field Computation by Moment Methods.” Macmillan, New York.

Harting, E., and Read, F. H. (1976). “Electrostatic Lenses.” Elsevier, Amsterdam.

Hawkes, P. W. (1987). Nucl. Instrum. and Meth. A238, 462.

Heddle, D. W. O. (1971). J. Phys. E 7, 981.

Heddle, D. W. O., and Kurepa, M. V. (1970). J. Phys. E 3, 552.

Jackson, J. D. (1980). “Electrodinamica Clasica,” p. 76. Alhambra, Madnd.

Jordan, P. C. (1982). Biophys. J. 39, 157.

Jordan, P. C. (1986). In “Ion Channel Reconstitution.” (C. Miller, ed.), p. 37. Plenum Press,
New York.

Jordan, P. C. (1989). Private communication.

Jordan, P. C., Bacquet, R. J., McCammon, J. A,, and Tran, P. (1989). Biophys. J. 55, 1041.

Kasper, E. K. (1987). Nucl. Instrum. and Meth. A258, 466.

Kellog, O. D. (1967). “Foundations of Potential Theory,” p. 160. Springer-Verlag, Berlin.

Kurepa, H. V., Tasic M. D., and Kurepa, J. M. (1974). J. Phys. E 7, 940.

Levitt, D. G. (1986). Ann. Rev. Biophys. Biophys. Chem. 13, 29.

Liebl, H. (1983). Int. J. Mass Spectrom. Ion Phys. 46, 511.

Martinez, G., and Sancho, M. (1983a). Am. J. Phys. 51, 170.

Martinez, G., and Sancho, M. (1983b). J. Phys. E. 16, 625.

Martinez, G., and Sancho, M. (1988). Int. J. Mass Spectrom. Ion Processes 84, 221.

Martinez, G., Sancho, M., and Read, F. H. (1983). J. Phys. E 16, 631.

Martinez, G., Sancho, M., and Garcia-Galan, J. C. (1987). An. Fis. Ser. B 83, 225.

Munro, E. (1987). Nucl. Instrum. and Meth. A2358, 443.

Parsegian, V. A. (1969). Nature 221, 844.

Parsegian, V. A. (1975). Ann. N. Y. Acad. Sci. 264, 161.

Renau, A., Read, F. H., and Brunt, J. N. (1982). J. Phys. E 15, 347.

Steele, C. W. (1987). “Numerical Computation of Electric and Magnetic Fields.” Van Nostrand
Reinhold, New York.



	Pags1-21.pdf
	Pag1n.pdf
	Pag2-3n
	Pag4-5n
	Pag6-7n
	Pag8-9n
	Pag10-11n
	Pag12-13n
	Pag14-15n
	Pag16-17n
	Pag18-19n
	Pag20-21n

	Pags22-33
	Pag22-23n.pdf
	Pag24-25n
	Pag26-27n
	Pag28-29n
	Pag30-31n
	Pag32-33n

	Pags34-41
	Pag34-35n.pdf
	Pag36-37n
	Pag38-39n
	Pag40-41n


