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1 Abstract

These notes can be used as part of an introductory course or lecture on SIMION. The
notes are designed to help the user understand the underlying concepts in SIMION so that
the user has a firm foundation to stand on when later using or learning to use SIMION.
What SIMION can do and how it does it are overviewed. These notes do not provide a
step-by-step tutorial on using SIMION; that may be done later. These notes reflect
SIMION version 8.0 (8.0.5).

2 Points covered

e SIMION GUI
e  Workbench concept (IOB file)
0 Contains PA and PAO instances, REC, FLY/2, and ION files
0 Supports multiple PAs, e.g. overlapping electrostatic and magnetic,
optimization, and higher density volumes. (chapter 9)
0 Questions:
* What are the issues with having multiple PA instance rather than a
single one?
= What are the instance selection rules?
e Coordinate system : azimuth, elevation
O Units: gu, mm, in
0 Workbench and PA coordinates
O Orienting PAs and ions

0 Viewing, rotating, cuttings of 3D models, asymmetric zooming
0 Displaying position/potential/gauss at the current cursor location (note:
averaging effect in 3D)
0 Grid units (gu) and mm units / orientations
0 Questions:
= Demonstrate viewing and cutting to see inside a system.
e Contours
0 Potential and gradient contours
0 Auto, use, 3D functions
0 Questions:
=  What are the two different types of contours supported in
SIMION?
= How does one define contours?
e Potential energy maps
0 Viewing, zooming
0 Positive/negative ion
0 2Dvs.3D
0 Questions:



= A potential energy map is 2D, but a system is usually 3D. How are
potential energy maps used in 3D systems?
Definition ions
0 Ways to define ions: by groups and individually or by .lua program.
0 By groups: .FLY/2 file
= Using deltas
Individually: .ION file
By .lua
Orientating in PA or workbench cords
Questions:
=  When are .ION, .FLY/2, and .lua files suitable? What are the
advantages/disadvantages of each?
Space-charge
0 Capabilities and limitations
0 Questions:
=  What are the limitations of SIMION’s space-charge methods?
Data recording
0 Recording to screen or to file
0 The concept: what, when, and how
= E.g. crossing a test plane
0 Formatting: excel output, precision, etc.
0 Lua techniques
0 Questions:
= How do you record data for import into Excel?
PA, PA#, and other files
0 PA#files—1V,2V, ...
O Visually inspect the PA#, PA1, PA2, PAO, .. files
0 Grid points v.s. solid electrode points (5-5)
0 Questions:
= What is the difference between .PA and .PA# files? When are
these suitable? What are the issues in each?
Refining files
0 Solves the Laplace equation
0 Questions:
=  What does refining do?
Fast adjusting
O What this means
0 Accessible from two locations: from main screen and from workbench
0 Questions:
=  What does “fast adjusting” or “fast scaling” mean?
=  What two places can you fast adjust from?
Issues with saving files: PAO, PA, PA#, IOB (when saving is necessary) + auto-
loading .FLY/2 and .REC files
0 Values not retained in the .IOB file (e.g. view settings, computational
quality.
0 Questions:

O 00O



*  Which of these files can meaningfully be placed into a workbench:
PA, PA#, PAO, .PA1?

= How is a PAO file created?

= How is a PAI file created? When is a .PA2 file created?

e Magnetic PAs

o
o
(0]
(0}

Limitations of
ng factor
setting via Lua program (measured magnetic field)
Questions:
= What capabilities does SIMION have for magnetic fields?
=  What is the ng factor?
* What advantage does defining a magnetic field in a Lua program
have?

e Trajectory calculation

o
(0}
o

(0}
(0}

Runge-Kutta

Variable time steps

Adjusting time steps — via computational quality (advancedcourse-3),
“time markers”. Reasons to-voltage changes or RF.

Observation of time steps in Einzel lens

Questions:
» What factors adjust time steps? What is the “default” time step?
(Appendix H)

= How to you determine or see what time steps are being used?

e Lua programs

(0}

O O0OO0O0Oo

Capabilities
= Randomizing ions via user programs
= Easy voltage control
» Extending the span of user program control
= Data recording — mark, message
=  Controlling time steps
=  Modifying ion motions
= Viscous or collisional cooling
®= Tuning (e.g. Tune example)
* Jon jumping tricks—(advanced course)
Segments
Variables + types of variables
Tricks
Debugging
Questions:
* What can Lua programs do?
= What are the differences between static and adjustable variables?
= What segments and variables are available to use?

e Ways to create geometries:

o

Modify, GEM, CAD import, SL Libraries
= Q: When are each suitable? What are the
advantages/disadvantages of each?



o
o

(0]

CAD import
Modify function
» The concept — filling and cutting
= Drawing electrode and non-electrode points at certain voltages and
shapes
= Changing dimensions and symmetry/mirroring
* Find function — e.g. changing points from non-electrodes to
electrodes — note: trick in generating linear reflectron
GEM files
= (Creating a PA file from a GEM file
= Debugging — GeomF button in Modify
= Scaling in physical units rather than grid units.
= Writing a program to interpolate variables into GEM files
= Questions:
e Explain what a .GEM file is.
e How does one debug a .GEM file?

e Files: PA*, IOB, FLY2/FLY/ION, TRJ, REC, GEM, Lua, STL

(0]

Question: what are these files?

e Limitations of SIMION

(0}

O o0o00O0Oo

Space-charge
Open systems
Grid accuracy (e.g. 5-2)
Time step accuracy
Frequency: static, low (quasistatic), high
~200M points (max 2-4GB) in 8.0, >4GB in 8.1
Questions:
» [dentify some limitations of SIMION.
= How much memory does a 50M point array require?

¢ Managing memory

(0]

Process manager, swap file, 8 bytes/point

e Common problems

(0]

[elNelNe

(0]

Maximum PA or ion limit

mm/gu scale factor

Differences between PA/PA#/PAQ

Ion trajectories display slows down computation; ion trajectory recording
consumes too much disk space

See FAQ page for more

e Windows tricks

(0}
(0}
(0}
(0}

Copy to clipboard (Print Screen key)

Drag and drop files from Windows Explorer into text editor

Bugs: File directory size limit + initializing random number generator
Setting custom text editor

e Other tricks

(0]

Running two or more instances of SIMION

e Definitions

(0}

Laplace



0 Fringing effect
0 Runge-Kutta
e Theory
0 Laplace + Refining
0 Runge-Kutta
e Resources
0 simion.com — FAQ, tutorials, papers
O manual + course notes

3 Tasks

Quick tour of SIMION

Introduce main concepts + special topics
Go through lab sessions

Review of material

Questions



4 What SIMION Does (A Brief Overview)

e Calculates electric fields and to some extent magnetic fields.
e C(Calculates the trajectories of charges particles through electric and/or magnetic

field, including time-dependent fields.
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Figure 1: Screenshots of SIMION simulation of three electrode einzel lens, with
calculated electric field (red lines of equipotential) and calculated particle

trajectories (blue lines).



4.1 SIMION calculates electric fields (E)

As a simple example (below), consider a long metal box that is open on the ends and has
different voltages on each of the four sides. We wish to calculate the electric field in the
center cross section (green). In this simple example, we will assume the box is
effectively infinitely long so that the problem can be solved in 2D.
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Figure 2: Simple 2D system of electrodes.



SIMION represents an electric field via a “potential array”, which is a 2D or 3D grid
of evenly spaced data points. Each data point contains the potential at that location.
The above system can be represented as a potential array like this:
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Figure 3 — View of a 2D SIMION potential array.

The potentials at some points (usually electrode surfaces) are known by the user and
entered as electrode points (solid black). The potentials of all other points (green) are
calculated by SIMION.



Once SIMION calculates unknown potentials (“refines” the array in SIMION lingo),
SIMION can plot the potential array in various ways.
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Figure 4: SIMION potential energy map view of potential array.

In the above figure, the vertical direction represents the potential at each

corresponding point in the array.
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Figure 5: SIMION plot of equipotential lines in potential array.

Lines of equipotential (which are perpendicular to field lines) can be plotted as well.
The electric field is determined directly from the potential V(x). E=-VV

4.2 SIMION calculates the trajectories of charged particles
through fields.

Now that we have an electric field fully known, we often want to see how particles move
through that field.

If we tell SIMION the initial conditions on a set of particles (e.g. position, velocity, mass,
and charge) as time t=0 in the presence of the previously calculated electric field,
SIMION can calculate the states of those particles in the future (t > 0).
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Figure 6: Define initial positions, velocities, charges, and masses of particles.
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Figure 7: lon trajectories calculated by SIMION and superimposed on the potential
energy map.

SIMION promotes intuition (e.g. the ions are balls, and the potential energy map is a
hill); it is clear now why the ions move as they do. Positive ions starting at the left
approaching and being repelled by the more positive plate on the right.

What else can SIMION do?
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Figure 8: Define data to record

SIMION’s data recording options can be used to output data on particles over time. For
example, you can record particle termination positions to a text file for further analysis in

Excel.
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Figure 10: SIMION works in 3D as well and can solve full 3D problems. Here the
above example is shown with the top and right plates removed (so that you can see
inside).
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4.3 Magnetic Fields

SIMION has some ability to solve for magnetic fields. It has some limitations in solving
(e.g. it solves for scalar magnetic potential via the Laplace equation), but an arbitrary can
be applied to particles.
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Figure 11: lons bent by magnet.

4.4 Space Charge
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Normally, fields and trajectories can be solved independently in SIMION. However, in
high current beams, the current in the beam itself can alter the surrounding electric field,
which can in turn alter the trajectories, so it becomes incorrect to solve these
independently. This is called a “space charge” problem and is more difficult to solve.
SIMION has some limited capabilities to handle this though.
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Figure 12: lons mutually repelled by Coulombic repulsion.

4.5 Lua Programs

Many additional capabilities are possible via SIMION’s user programming feature (Lua
scripting language).

e Oscillate electrode voltages (e.g. RF quadropole rods)
e Define your own electric or magnetic fields, or adjust the calculated field.
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e Modify ion trajectories—randomize ion positions and energies according to a
distribution, add viscosity or randomized on-gas collision effects, and create
secondary ions.

e Perform calculations, output data, and add logic to the simulation

-- test.lua

simion.workbench_program(Q)

adjustable electrode_voltage = 500 -- voltage cycle magnitude
adjustable switch_time = 2.0 -- change time (microseconds)

-- electrode voltage control
function segment.fast adjust()
-— start undulating at time switch_time
if i1on_time_of flight < switch_time then
adj _elect01 = electrode_voltage
* cos(1l + ion_time_of_flight/10)
else
adj elect01 = 0O
end
end

Figure 13: Example Lua code. At a given time, this starts oscillating an electrode

voltage according to the given sinusoidal equation.

We can see the effect of particles oscillations due to this oscillating electric field:
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5 Theory

Major theorems in electrodynamics are described here. You need not use these because
SIMION takes care of this. However, it’s nice to know what these are to have a general
idea of what SIMION is doing, and it can help you avoid pitfalls.

5.1 Gauss’s Law

IE-da:iQ 1)
S 50

S is a closed surface
E = E(x) = (Ex, Ey, E,) is the electric field at point X=(x,y,z).
a=a(X) = (ax, ay, a,) represents an infinitesimal portion of the surface.
a’s has magnitude equal to the surface area and direction normal to the surface
€o 1s the permittivity of free space (a constant)
Q is the total charge enclosed inside the volume bounded by the surface.

This equation relates the electric field on a surface to the charge within the

volume bounded by the surface. Implication: the electric field on the surface is
independent of how the charge is distributed within the volume!
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5.2 Gauss’s Law in differential form

V-E=—p (2)
&

E = E(X) = (Ex, Ey, E,) 1s the electric field at point X=(X,y,z).

€9 1s the permittivity of free space (a constant)

p = p(X) is the charge density (charge per volume) at point X=(x,y,z)

This is a simple reformulation of Gauss’s Law by applying the divergence

theorem (an important theorem in calculus). Essentially, let the size of S
approach zero

5.3 Relationship between Electric Field and Potential

(3)
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E = E(X) = (Ex, Ey, E,) is the electric field at point X=(X,y,z).
V = V(X) is the potential energy at point X=(x,y,z).

The electric field can be computed easily from the potential energy map.
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Figure 15: Potential energy map. Equipotential contours have been superimposed.

Conversely, though we usually don’t have a need to do so in using SIMION, the
potential energy map can be computed from the electric field (though there is an
undefined “constant of integration” since E = -V (V + C) for any constant C).

5.4 Poisson’s Equation

Putting the above equations together, we get the very important Poission
equation:

(4)
&

V = V(X) is the potential energy at point X=(x,y,z).

p = p(X) is the charge density (charge per volume) at point X=(x,y,z)
€9 1s the permittivity of free space (a constant)
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This is a simple derivation from Gauss’s Law in differential form:

L p=vE=V.(VW)=—v¥V (5)

&

When p > 0, we say that the system has “space-charge.” Space-charge occurs
when ions are too close to each other (i.e. the charges in the particle beam are
significant enough to affect the trajectories of the particles in the beams). Though
SIMION 8.0 (unlike SIMION 8.1) does not solve the Poisson equation, it does
support some methods for roughly estimating space-charge effects.

8 smIon o
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M [~ Pause step [Qual:
m I Paussevent| 3 =

el

| Bvm | Command: |

Figure 16: ions initially traveling parallel to each other but repel each other.

5.5 Laplace’s Equation

V3V =
0 (6)

This is a direct result of Poisson equation when p=0. It is often the case that p =0
(or approximately so) in space. We say that “space-charge” is negligible.

The Laplace equation determines which electric potentials (or fields) are
permissible. Along with a boundary condition (your electrode voltages),
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SIMION solves the Laplace equation in order to compute space potentials (and
hence electric fields as well).

SIMION solves the Laplace equation using the numerical method called the
“Finite Difference Method (FDM),” which is rather straightforward. It is
essentially an averaging process resulting from this theoretical result:

1
V=—?fVda 7)
S

Az

In words, the voltage at a point in space equals the average of the voltages of the
points around it. This also implies that the potential energy map from a static
electric field can contain no local minimum or maximum (which we’ll discuss
later).

5.6 Numerically Solving the Laplace equation.

There are many methods to solve the Laplace equation numerically.

Could we calculate these potentials using Excel? It’s easier than you think! We
1

2

§;V da. To calculate this numerically, we instead
S

apply its approximation that each point is the average of the four neighboring
points.

apply the relationship V = Z
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Figure 17: Excel iterative calculation options.

First, we must enable “Iteration” since circular references will be used.
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Set B2 = (1/4)*(A2+C2+B1+B3) (i.e. average of four neighbors). Then fill down
and right. The converged result displayed.

&

Figure 20: (left) Potential energy plot from Excel, (right) potential energy plot from
SIMION

That’s basically the calculation that SIMION does...except more efficiently and
more generally.

5.7 Earnshaw’s Theorem

“A charged particle cannot be held in a stable equilibrium by electrostatic force alone.”
(Griffiths, 1999)

Why does a quadruple or ion-trap oscillate pole voltages?

Why does an ICR cell contain a magnetic field?

Because a charged particle cannot be held in a stable equilibrium by
electrostatic force alone.
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L (280

Figure 21: Potential energy well (local minimum)

This potential energy well (with local minimum to trap a particle whose path is shown in
red) is not possible in free-space (of zero space-charge) with any configuration of
electrodes of static potential If it did exist, it would violate the result

V =

dnr’

However, you can trap a particle with a static magnetic field or oscillating electric
fields.

29



"% quad.iob - SIMION _ O] x|
File Help

‘“workbench P | Particles | PE/Contours | Yariables | Display | Log | Hide |

P& Instances Positioning Fc
L- 7 Info 5.;a|e:|D.2 mmjguil Undo 4ar

2: QUADIN.PAD g "
3 QUADOUT.FAQ L+ | Fast adjust volkages. .. Xwb+:|45.6 mm Wai

v b+ |0 i j

Display: 1 %Y | 27 3wz | 430Isa | PE 22D | 73D | 1230| Print. .. ‘ Qual| 3 j

&,

[w Constrn

Patential Energy Surface View

Figure 22: “Saddle-like” potential energy surface of quadrupole.

For example, here’s the potential energy map on a cross-section or a quadrupole with
poles at constant potential. Note the “saddle”—an ion is not stable on this unless we

oscillate the electrodes.

The ICR cell traps with a magnetic field:
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Figure 23: ions moving through an ICR cell.

5.8 First Uniqueness Theorem:

The solution to Laplace’s equation in some volume V is uniquely determined if V
is specified on the boundary surface S. (Griffiths, 1999)
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That is what we did—all points we sought to calculate were surrounded by a
boundary electrodes.



88 SIMION
File

Help
PA Parameters & Funckions
electrostatic, planar,

Set Params | Double

=Trp

Misc

Print

Coordinates Help: |Current point potential,
[ Where 2

mirror[mone],

%=51, y=51, z=1 GeomF Halve:

Undo

Colars

[ IRel

Point Info

Display: | 1xY

| 3D | Zoom 2D | Layer: 2= | 0 :II

* Electrode
Tvpe:

L

""" Mon-Electrade
Potential:l 1 i

| Find: +-| 0 Y

Marks
% Include ¢ Exclude

Clear Restore

Shape: Box Circle

Line Hyperb

Functions on Marks

Parab |

Replace Edge F

Copy Move

Mirrar

FaotCpey

Crop

LR R R s SR e R R W R LR e R R ST ]

LR ReReErb R Re R el bwb R e bR LRl R R e R ErE R R e el LR L b LR e R e R Ly

LR EeRe L LR e R el SR eLw iR e i e eR LR e w bR LS e R ErEeLeielel
LrRs Rl tE el beR Ll eRrb et bbb Lt e b R bR el bt et i et bbb LR e Lt b LR Lt e bR Ly

000O0000Og000O00000000O0000200000000000000000000000

Cammand; |

e

Ele PA: PlaiMir=fon) (51x 51w 12) USED: 260120000 Pts

1002s

Figure 25: Circle (or sphere) of charge not bounded by any other electrodes.

Can we do the above?
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The above system does not have a boundary. Laplace will not be solved

Here’s a more correct simulation
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Actually, SIMION is a tad more lenient than this...
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Figure 28: Partially bounded system.

Edges that are open are treated essentially as Neumann boundaries conditions
(zero normal derivative perpendicular to the surface). Sometimes this is what we

want; sometimes it is not.
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Figure 29: Potential energy map.

Note that this is roughly correct (ignoring fringing effects, i.e. curving near the

edges).

We’ve seen another partially bounded system before:
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5.9 The Lorentz Force Law

The movement of particles in electric and/or magnetic fields is described by the
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Lorentz force law:

F=q[E+ (vxB)]

And Newton’s second law of motion:

6 Anatomy of a SIMION Project

F=ma

(8)

(9)

A SIMION simulation consists of a number of different pieces. These are described here.

6.1 Workbench Concept
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Figure 31: Components of a SIMION workbench
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6.2 lon Optics Workbench (.IOB) File

The .10B file is the main SIMION project file that ties all other files together,
and it’s what you “run.” The .IOB file is accessed from the “View” screen. It
e Contains other files
e Defines the extent of the space enclosing the system (length, width,
height)
e Specifies the scaling, rotation, and translation of the .PA instances.
e Specifies the voltages on any fast adjustable .PAO instances.
e Specifics any other project-wide settings.
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6.3 Particle Definitions: .FLY2 and .ION files
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Figure 32: SIMION particle definitions in “FLY?2” format.

Specifies:

e One or more “groups” of ion definitions, where each group specifies

0 The number of particles in the group
0 The mass, charge, position, angle, and KE of the first particle in the group.
0 Deltas for subsequent particles in the group

FLY?2 files can make it easy to generate a series of ions, where each ion differs from the
next by a constant. However, .FLY?2 files are not powerful enough to specify arbitrary
ions (not related by a constant delta). For this, we need .ION files.
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8% einzeliob - SIMION - 10| x|

File  Help
"u'u'u:urkbenu:h] Phs ] Particles | PEjContours | Yariables | Display | Log | Hide  Particles Define |

5 imitial particle parameters,
Load | Save
How are particles defined? Coordinates relative ko
{w InlelduaIIy{ION} " Grouped {,FLYZ) " 0ld Grouped {.FLY |F‘.ﬁ. Instance 1{1) Crigin ﬂ
Patticles:
Iliﬁ of 11 Add | Delete | Miove | Ceelete al |
Selected particle:
mass: |1EIE| &y Use:
charge: |1 = Electron
x: |-99.999 e Protan
L |D 2 Default
z: |E| qu
az angle: |EI deq Restore
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KE: [200 e
TCE: |EI UseC
i Fs |1 funitless)
Calor: |3 j. e
‘ (0] 4 Cancel Command;, |

3D{0/0) Az= 90.00, El=-0.00 100%:

Figure 33: SIMION particle definitions in “.1ON” format.

The .ION file defines one or more ions, each individually.

;1

1.00000000e+000, 2.00000000e+000, 3.00000000e+000, 4.00000000e+000,
5.00000000e+000, 6.00000000e+000, 7.00000000e+000, 8.00000000e+000,
9.00000000e+000, 1.00000000e+000,0

1.00000000e+000, 2.00000000e+000, 3.00000000e+000, 4.00000000e+000,
5.00000000e+000, 6.00000000e+000, 7.00000000e+000, 8.00000000e+000,
9.00000000e+001, 1.00000000e+000,0

1.00000000e+000, 2.00000000e+000, 3.00000000e+000, 4.00000000e+000,
5.00000000e+000, 6.00000000e+000, 7.00000000e+000, 8.00000000e+000,
9.00000000¢+002, 1.00000000e+000,0

Figure 34: TEST.ION - Contents of the .ION file (showing three ions, one per line).
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Since it’s just a delimited text file, you could even read/write the .ION file in Excel.

6.4 Data Recording (.REC) file

The data recording file specifies what data SIMION should record as the particles move

through the system.

2 SIMION
File  Help

wharkbench | Phs | Particles | PE/Contours | Wariables | Display | Log | Hide

sefines data recording parameters,

v Record data

Load... | Save... | .RECfile:

What Data To Record

Jse: Undo | Default ‘ Blank | JON |

When to Record This Data

Sli=lks

Recarding

Faormat for Recorded Data

v | Ion number

Events

Time aof Flight {TOF) {usec)

Mass (armnu)

Charge (&)

Instance number - electric

Instance number - magnetic

Fasition; ¥ {mm)

Pasition; ¥ {mm)

Position: Z {mm)

apeed: Wt {mmjusec)

Angle: Azm (deq)

Angle: Elv (deqg)

Velacikys Vi fimfusec)

Velaciky: Wy {mimfusec)

Welocitws Wz (mmfusec)

Acceleration: & {mmfusec™2)

Acceleration: Ax (mmfusec™z)

Acceleration: Ay {mmfusec™z2)

Acceleration: Az (mmfusec™2)

Potential: v

‘Yolkage gradient: grad W {4 fmm)

‘Yolbage gradient: dvids O /mm)

‘Yoleage gradient: dvidy (/mm)

Yalkage gradient: dvfdz (W/mm)

Maqgnetic Field: B {Gauss)

Magnetic Field: Bx (Gauss)

Magnetic Field: By (Gauss)

Magnetic Field: Bz (Gauss)

Kinetic Energy: KE (V)

v Kinetic Energy; KE Errar (eV)
Charge Weighting Factor (CWF)

[[%|[%]]%

5| [%][%][%]]%

v

v

Ton's Start

lon's Every Time Step
Ton's Splat

all Markers

Entering an Instance
Crossing Disconkinuities
Welocity FReversals
Crossing Plane ¥=7
Crossing Plane ¥=7?
Crossing Plane Z=7

v Header

v Date and Time

v Flight Settings

v Describe Ions

Form Feed Before Each Ion
Farm Feed After Each Flv'm

LY

Notes:l

Farmat: ™+ erbose (" Delimited
Delimiter:| , -

Mumber Format: © FO EM G
width:| 0 illprecision: 0 :II
Leading Spaces:| 0 j

Qutput File: jout.bxt

=

Potential Energy Surface View

Figure 35: SIMION Data Recording options

Command; |
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Potential Energy Surface View

Figure 36

Data can be recording to the screen in real-time or to a text file. The text-file may
even be in the delimited format for reading into Excel or another program.

6.5 Potential Array Instances (.PA and .PAO)

We’ve discussed potential arrays already, but a more detailed description will be given
now.
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A potential array instance defines a 2D or 3D electrode geometry, as well as
electric or magnetic potentials at every point (electrode or non-electrode) in the
geometry. Electric or magnetic fields are calculated from these potentials.

e Defines a 2D or 3D uniform rectangular grid (mesh) of points.

0 Each point is marked either as an electrode or non-electrode
(space) point.

0 Each point has a potential.

e s marked to indicate whether the point potentials represent electric or
magnetic potentials.

e Is marked to indicate whether symmetry (cylindrical or planar) and/or
mirroring (x/y/z) is applied to the mesh.

ENEEE
(] B Create anew potential array (PA)

= .
L] | N Memory,
EEEEN

Symmetry:  Planar € Cylindrical
Mirraring: | % [ v [ 2

v

Dimension | 51| —points
W | 51 == points
z: | 1 E points
Max P& size; | 0000 jlpcuints
Field type: {* Electric © Magnetic
et o o

Ilse Geometry File

Figure 37: Creating a new potential array in SIMION

45



8 sIvIoN
File Help

electrostatic, planar,
mirrar[none],
¥=51, =51, 2=1

Paint Infa

(+ Electrode
8 Use
Type: i~ Mon-Electrode ——
Potential: | 4 ¥
[~ Find: +-| 0 Y

Marks
& Include O Exclude
Clear Restore

Shape: Box Circle

Line | Hyperb Parab

=10] x|

P& Parameters & Functions Misc Coordinates |Help: [cyrrent point potential. J
Set Params... | Double =Tmp Print. .. M i ?
[~ IRel
GeomF... Halve Undo Colars... J

Funckions on Marks

Replace Edge F
Copy Maove
Mirrar RokbCpy
Crop

Display: | L&Y 53D Zoom 2D I Layer: Z= |0 =

AN NN NI NN NN EEEEEEE SN NN N NN EEEEEEEEEE
IS S N N N Nt gl T S N N

| L]}
‘ [8]4 Cancel Command; |
Ele PA: PlafMir=Mon) (S1x 51y 1z} USED: 260120000 Pts 100%

Figure 38: Example of SIMION potential array

The potential array instance is a 2D or 3D uniform rectangular grid (mesh) of
points. Each point can be an electrode (black) or non-electrode (clear). Each
point (electrodes and non-electrodes) has a potential.
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Figure 39

Here is another view of the potential array instance showing the potential (vertical
axis) of each point. The electric field (black contour lines) are calculated from it.

| -

Worhgpeet) (B35 || Portcs | PE(Gertenss | rsties | Dopieg | Log | thde |

WAL Bt Poteray | #o
804 | comy | 1o | tito B WEellus=
et | e | oo | et awne veages. . = - "
1 o || 4 T

Doy 1w | 2z | g [ o | oo (oo ae] we | omls =

8. -

Cornbin

ME o | conuns]

Figure 40

The 2D mesh along with symmetry/mirroring (e.g. extrude along the z-axis) can
represent a 3D object in practice.
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% einzelioh - SIMION =13
File Help
P& Parameters & Functions Misc Coordinates |Help: [Edit selected potertial array. |

slectrostatic, cylindrical, et Params | Double ‘ >Tmp || print | I where || 4
| I tRel

The geometry and potentials of the patential array can be

modified here, J

mirror[y],
%=91, y=20, 2=1 GeamF | Hahve ‘ Undo Colors

Paint Info Display: | 12V 3D Zoom 20 Layer: 2= |0 j
Ty, Elsctrods =
PR Nun—EIettmdeJ‘
Potential:| 0 1
I Find: +| 0 Y

Marks
@ Include " Excluds
Clear Restore

:

Functions on Marks e Y YW

Replace EdgeF s

Copy Hove

Mirrar RotCpy

Crop

=

MonE 3.6408 Wolts ak x =3y =2, z=0 100%

"4 einzeliob - SIMION _ O] x|

File Help
Workbench I FAs

e | Fiym I Grouped W Retain ypep |1 Tim
Data Recording. .. ’_7 Toual: I'; Eer’un hane IE ;‘etw o |—1
— Pause step B s& programs aks el
B =T Recarddata | 1E-12
User Pragram. .. - = ecord data ’—
Displa: #¢ | 2v | %2 | 3D Iso 220 | -z30 | +230 | Print Qual:’ﬂ_j

&,

¥ Constrn

Command;

PE/Cantours | Variables | Display | Log | Hide |

rajectories

| gy | conmant |

Figure 41 — Original 2D potential array (top) and physical view (bottom) after
applying 2D cylindrical symmetry.

Here’s a three element “Einzel” lens (bottom) formed by a 2D mesh (top) rotated around
the x-axis by cylindrical symmetry.
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6.6 Creating Potential Array Instances (.PA and .PAO)

for use in ion optics workbenches (.IOB files)

Modify
function

Refine a .PA file

Geometry
File (GEM) enerates Y

Refined

3D CAD Unrefined Potential
model (.STL) Potential Array (.PA
Array (PA or .PAO)

Virtual Device or .PA#) '
model

2D Bitmap

Image (e.g.
BMP) .PA1/.PA2/

... (one per
electrode)
+ an empty
.PAO file

Refine a |[PA# file Fast adjust .PAO

file

C++/Perl/ Python
program

(or Luain 8.1)
Figure 42: Different ways to create potential arrays.

The unrefined potential array (.PA or .PA#) contains the electrode geometry and
electrode voltages. It does not need to specify the non-electrode voltages (there will be
calculated).

The PAL/.PA2/.. files contain the solutions to the non-electrode voltages, one per
electrode. There are in separate files so that we can quickly adjust voltages without re-

refining).

The PAO is essentially a linear combination of the PA1/PA2/... files (principle of
superposition):

PAO =k; PA1 + k, PA2 + ks PA3 + ...

Where k; represent the electrode voltages. This makes voltage changes quick (especially,
e.g. oscillating the potentials on a quadrupole).

49



6.7 Geometry Definition

SIMION provides multiple ways to create geometries in potential arrays:

3D pixel paint-like program (Modify)

Mathematical geometry description in a text file (GEM files)

CAD import (using the SL Tools utility)

Programmatically (e.g. using the SL Libraries) from C++, Perl, or Python
languages. (or Lua script in 8.1)

e 3D CAD-like drawing in Virtual Device utility (not included in SIMION)).

Many of the previous screenshots have shown the Modify screen, but you may prefer to
draw your geometries via other methods like CAD software (e.g. SolidWorks, AutoCAD,
etc.).
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6.8 Geometry (.GEM) File

A GEM files is a text-file containing mathematical constructive solid geometry
(CSG) operations. It is used to create a PA file.

In constructive solid geometries, shapes are formed by the addition and subtraction of
other shapes. It’s a bit like machining (form a plate and then cut a hole through it).

Figure 43: Constructive solid geometry operations.

Here’s how to create the previous box geometry in a GEM file:

; box.gem
pa_define(50,50,1,planar,non-mirrored)

electrode(1) {

fill { within { polyline(49,0, 0, 0) }}
¥
electrode(2) {

fill { within { polyline(0, 0, 0, 49) }}
}
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electrode(3) {
fill { within { polyline(0, 49, 49,49) }}
}

electrode(4) {
fill { within { polyline(49,49, 49,0) }}
}

Figure 44: GEM file defining a rectangular mesh of 50 x 50 points with four
electrodes of voltage 1, 2, 3, and 4 along each border.
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; makes simple detector with dynode as fast adjust file
pa_define(101,71,71,planar,non_mirror)

locate(10,35,35) { ; center in 3d array 10 back in x
electrode(0) { ; zero volt electrode
; create entrance plane
fill{
within{centered box(0,0,2,70)}
notin{ locate(,.,,,-90){ circle(0,0,5) }} ; hole in entrance plane
}
}
electrode(1) { ; use electrode number one for dyode
locate(5,-8) { ; offset location for dynode
;FS5inxand -8 iny
include(dyn_inc.gem) ;include dynode
}
}

electrode(2) { ; use electrode number two for detector
locate(20) { ; shift detector aiming location +20 in x
locate(,,,,,30) { ;elevate 30 degrees (revolve detector)
locate(20) { ;shift detector +20 from point of rotation
include(det inc.gem) ; include detector

& qMION =k
File  Help
. PA Parameters & Functions Misc Coordinates |Help: [Display OpenGL 30
electrostaic,planar, _Set Params... | poutle | sTmp || pr.. FLMT'? 7| [vewof Pa.
I rel . |
Yo0, ye7l, o7l GeonF... | Heve | Undo || Colors.. | o
Paint Infa Display: Lt | 2 3 axz [ s Zoom 2D Layer: [0 j
Toper EECHOOS v
TP Non-Electrode =
Potential 0 Y
I Endi |0 W
Marks
' Incude " Exclude
Clear | Restore

Shape: | Box Circle
e | Hypert

Functions on Marks

Replace EdgeF
Copy Move
Mirror RotCpy
Crop
[¥ Faces [ Lnes [ Ponts [ voltage Color | Texture ClpX J— —_
[ Symmetry [ Axes | Mormals [ Isometric Clipy Ji —_
Brightness Ji Opanueness J aGpz f——m —
Recenter | Mouse Help
| oK Command; |
Ele PA: Pla(Mir=Non) (101 71y 71z) USED: 509141509141 Pts 100%

Figure 45: Geometry file example based on DETECT.GEM in SIMION.
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6.9 CAD Import (STL Files)

STL is a triangular surface mesh format supported by most CAD packages (including
SolidWorks, AutoCAD, ...). SIMION can convert it to a potential array.

Figure 46: STL file created by a CAD package (Source: (¢c) 3D CAD Browser
(www.3dcadbrowser.com) (2001), by Ross Blackburn). 24723 polygons, 22969
points)

Figure 47: Zoom up of head—tiny triangles form the surface.
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&/ SIMION SL(TM) Tools

Function Help

Convert Vector --= PA

input file [5TL] ||_| tworkhsimcadt3doadh 2304t | Y
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srale: |'| B. 3544521337871

P 17

. 460

ha: |1 ]

num points: 1101279620
output file [FA]: |LI:\wnrkhsimcadﬂdcadhﬂﬂ#.F'Mi | W
wiew output? v

Corveert

] 2003-2004 Scientific Instrument Services, Inc.
v, 1.0.2-betal - 20050219

Figure 48: Convert the STL file to a PA file using the SL Tools utility.
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|
Figure 49 — Generated PA loaded into SIMION (older SIMION 7.0 version)

5

Above is the simi-o-saurus in SIMION. Note that the STL format is a surface (not
volume) format. Here’s a CAT-scan of the simi-o-saurus’s head:

.I-:igure 50

It’s hollow! But that’s ok. Why? The Laplace equation needs the boundary (not the
inside) of electrodes to be defined (first uniqueness theorem). The results are identical
with or without a brain.
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6.102D Bitmap (e.g. .BMP) files

Another option (less frequently used) is to convert 2D bitmaps to potential arrays. This
mostly doesn’t apply to 3D arrays though.
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PA -= 3TL wigw oukpuk? ™

Bitrnap - > P&

Texk -=> Pa Converk

) 2003-2007 Scientific Instrument Services, Inc, - wisiy, simion, com
v 1.1.2 ]

Figure 51: Converting 2D bitmap image into SIMION potential array using
SIMION SL Tools utility.

(left) Creating a 2D image using the MS Paint (the colors indicate the voltages, 1V, 2V,
3V). (right) Converting the bitmap file to a PA file using the SL Tools utility.
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Figure 52
The PA (after applying cylindrical symmetry in Modify) is shown here in SIMION.
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